
Software Development Methodologies, Processes and
Life-Cycle in a Project-Oriented Company

Katranček, Luka

Undergraduate thesis / Završni rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Economics and Business / Sveučilište u Zagrebu, Ekonomski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:148:128801

Rights / Prava: Attribution-NonCommercial-ShareAlike 3.0 Unported / Imenovanje-Nekomercijalno-
Dijeli pod istim uvjetima 3.0

Download date / Datum preuzimanja: 2024-07-13

Repository / Repozitorij:

REPEFZG - Digital Repository - Faculty of Economcs
& Business Zagreb

https://urn.nsk.hr/urn:nbn:hr:148:128801
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://repozitorij.efzg.unizg.hr
https://repozitorij.efzg.unizg.hr
https://zir.nsk.hr/islandora/object/efzg:3673
https://repozitorij.unizg.hr/islandora/object/efzg:3673
https://dabar.srce.hr/islandora/object/efzg:3673

University of Zagreb

Faculty of Economics and Business

Bachelor Degree in Business

Software Development Methodologies,

Processes and Life-Cycle in a Project-Oriented Company

Undergraduate Thesis

Luka Katranček

Course: Informatics

Mentor: Mirjana Pejić-Bach, PhD

Luka Katranček, JMBAG: 0067532774

Zagreb, September 2019

2

Name and family name of student:______________________________

STATEMENT ON ACADEMIC INTEGRITY

I hereby declare and confirm with my signature that the ______________________________

(type of the paper) is exclusively the result of my own autonomous work based on my

research and literature published, which is seen in the notes and bibliography used. I also

declare that no part of the paper submitted has been made in an inappropriate way, whether by

plagiarizing or infringing on any third person's copyright. Finally, I declare that no part of the

paper submitted has been used for any other paper in another higher education institution,

research institution or educational institution.

 Student:

In Zagreb, ________________ _________________________

 (date) (signature)

3

Abstract
With this paper, I would like to put on paper the whole lifecycle of Software Development.

From the business case for a new software solution, business requirements creation, features

creation to development, development methodologies, software testing methodologies and

lastly software maintenance and software retiring. I will explain all this from the perspective of

a project-oriented and heavily utilized company, which is working at full capacity requiring

strict prioritization of projects and deliverables. I am using all available sources such as

scientific articles and literature dealing with topics on software development methodologies,

project and portfolio management and software release management available to me. Purpose

for this paper is to paint a clear and concise picture on how project-oriented companies can

tackle risks and issues managing software development in order to ensure the creation of added

value to their products and customers.

4

Table of Content
Abstract ..3

1 What is Software Development? ..5

1.1 Members of the development team ..7

1.2 Constant change ..8

2 Modelling the Process and Life-Cycle ..9

2.1 The meaning of process ...9

2.2 Software Process Models (Methodologies) .. 10

2.2.1 Waterfall model .. 10

2.2.2 Agile methods .. 12

3 Planning and Managing a Project ... 14

3.1 Tracking Progress.. 14

3.2 Project personnel ... 18

3.3 Effort estimation ... 19

3.4 Risk Management.. 19

3.5 The Project Plan .. 21

4 Capturing the Requirements and System Design ... 23

4.1 Defining the requirement ... 23

4.2 Types of requirements ... 25

4.3 Design process .. 25

5 Writing the Programs and Testing .. 28

5.1 Code ... 28

5.1.1 Extreme programming .. 29

5.2 Testing .. 31

6 Delivering and Maintaining the System ... 33

6.1 Delivery .. 33

6.2 Maintenance .. 33

7 Conclusion ... 34

8 Sources .. 35

9 List of Figures .. 36

5

1 What is Software Development?
Software development is a tool used to help solve problems. More than often is the problem

we are dealing with related to a computer or an existing computer system, but sometimes the

difficulties underlying the problem have nothing to do with computers and for that reason one

has to understand the nature of the problem. More specifically, one must be very careful not to

impose computing machinery or techniques on every problem that comes his way. The problem

must be identified and solved first and only then, if needed, can technology be used as a tool to

implement the solution.

Most problems are large and sometimes tricky to handle, especially if they represent something

new that has never been solved before. Firstly, the problem is analysed, meaning it is broken

down into pieces that can be understood and then put into context. So the larger problem can

be represented as a collection of small problems and their interrelationships. Figure 1 illustrates

how analysis works. It is important to note that the relationships are as essential as the

subproblems themselves. It could be that the relationships hold the key on how to solve the

larger problem, rather than simply the nature of the subproblems.

Figure 1 Problem analysis

Once the problem was analysed, we must construct our solution from components that address

the problem’s various aspects. Figure 2 illustrates this reverse process. Synthesis is the putting

together of a large structure from small building blocks. Same as analysis, the composition of

individual solutions may be as challenging as the process of finding the solutions. Any problem-

solving technique consists of two parts: analysing the problem to determine its nature, and then

working out a solution based on the analysis.

6

Figure 2 Problem synthesis

To help us solve a problem, we employ a variety of methods, tools, procedures and paradigms.

A method or technique is a structured procedure for producing a result. For example, a chemist

may create a new substance mixing and altering other substances together in a careful and

ordered fashion to that the new substance is created just the way it is supposed to. The procedure

for creating a new substance involves timing and ingredients but may not depend on the

equipment used.

A tool is an instrument or automated system for accomplishing something, for getting work

done in a “better” way. “Better” meaning that the tool can make a certain task be performed

more precisely, more efficiently, or more productively. For example a pair of scissors is a tool

to make paper cutting faster and more straight, unlike if we were to tear a page.

A procedure is like a recipe: a combination of tools and techniques that make for a certain

product.

Lastly, a paradigm can be explained with the help of examples of cooking styles. In the world

we have Chinese cooking and French cooking, among others, and so too we differentiate

between object-oriented development from procedural ones. One is not better than the other

and each has its own pros and cons, but there are situation when one is better-suited than the

other. A paradigm represents a particular approach or philosophy for building software.

One key component if software development is understanding that it is a creation of a product

which has an end user who pays for that product/service. Communication between the customer

and developer is essential; if that fails so does the system. We must understand what the

7

customer wants and needs before we can build a system to help solve the customer’s problem.

The number of people working on the software development depends on the project’s size and

degree of difficulty. However, no matter how many people are involved, the roles played

throughout the life of a project can be distinguished. In general, the participation in a project

falls into one of three categories: customer, user and developer. The customer is the company,

organisation, or person who is paying for the software system to be developed. The developer

is the company, organisation, or person who is building the software system for the customer,

it encompasses any manager needed to coordinate and guide the programmers and testers. The

user is the person who will actually use the system: the ones who sit at the PC and take

advantage of the new tool.

1.1 Members of the development team
As said earlier, the first step in any development process is finding out what the customer wants

and documenting the requirements. As already seen, analysis is the process of breaking things

into components to understand them better. Consequently, the development team requires one

or more business analysts to work with the customer and conclude what exactly the customer

needs and transform the needs into business requirements.

Once the requirements are known and documented, analysts work with solution designers or

software architects to generate a system-level description on what the system is to do. In turn,

the solution designers work with programmers to describe the system in such a way that

programmers can write code to implement what the requirements specify.

After the code is written, it must be tested. The first tests are usually done by the programmers

themselves, but each team should have a testing team ready to test the code. A fresh set of eyes

will catch the faults that the programmers overlook. When units of code are integrated into

functioning groups, a team of testers works with the implementation team to verify that as the

system is built up by combining pieces, it works as designed and according to specification.

When the development team is satisfied with the functionality and quality of the system,

attention turns to the customer. The test team and the customer work together to verify that the

complete system is what the customer wants; they do this by comparing how the system works

with the initial set of requirements. Then, “trainers” show users how to use the system.

For many software systems, acceptance by the customer does not mean the end of the

developer’s job. Incidents are to be expected if the system is of high complexity, and the

company should have a maintenance team ready to address these issues while in production.

8

Additionally, the customer’s requirements may change as time passes, and corresponding

changes to the system will have to be made.

Just as manufacturers look for ways to ensure the quality of the products they produce, so too

must software developers find methods to ensure that their products/solutions are performing

as imagined.

What is meant by quality1:

 The transcendental view – where quality is something we can recognize but not define;

we can think of software quality as an ideal toward which to strive, but may never be

implemented completely.

 The user view – where quality is fitness for purpose; measuring product characteristics

such as reliability, to understand overall product quality.

 The manufacturing view – tries to measure quality during production and after delivery,

it examines whether the product was built right the first time. It can also be called

process view because it advocates applying efficient processes.

 The product view – looks at the product from inside to evaluate product’s intrinsic

values; what added value does it bring. It is assumed that good internal quality indicators

will bring good external ones, such as reliability and maintainability.

 The value-based view – quality depends on the amount the customer is willing to pay

for it

1.2 Constant change

Software development is a discipline which allows for the customer to review the plans at every

step and to make changes in the design. After all, if the developer produces a great product that

does not meet the customer’s needs, that product is obsolete and has wasted everyone’s time

and effort. For that reason it is essential that developer’s tools and techniques are used with an

eye toward flexibility. As various stages of a project progress, constraints that were not

anticipated arise. For example, after having chosen hardware and software to use for a project,

a developer may find that a change in the customer requirements makes it difficult to use a

particular database management system to produce menus exactly as promised to the customer.

It also must be recognized that most systems do not stand by themselves. They interact with

other systems, either to receive or to provide information. Developing such systems is complex

1 Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition. Pearson, Prentice Hall, N.J.

9

simply because they require a great deal of coordination with the systems with which they

communicate. These problems are among many that affect the success of software development

projects. Other reasons for an IT project to fail are2:

 Poorly defined applications (miscommunication between business and IT) contribute to

a 66% project failure rate, costing U.S. businesses at least $30 billion every year

(Forrester Research)

 60% – 80% of project failures can be attributed di- rectly to poor requirements

gathering, analysis, and management

 50% are rolled back out of production

 40% of problems are found by end users

 25% – 40% of all spending on projects is wasted as a result of re-work

 Up to 80% of budgets are consumed fixing self- inflicted problems Defining “Process”

and “Life-Cycle” in Software Development

2 Modelling the Process and Life-Cycle

2.1 The meaning of process

Whether it be developing software, writing a report, or taking a business trip, we always follow

a sequence of steps to accomplish a set of tasks. The tasks are usually performed in the same

order each time. We can think of a set of ordered tasks as a process: a series of steps involving

activities, constraints and resources that produce an intended output. When the process involves

the building of some product, we sometimes refer to the process as a life – cycle. Therefore,

software life-cycle describes the life of a software product from the idea itself to its

implementation, deliver, use, maintenance and shutdown.

Processes are important because they impose consistency and structure on a set of activities.

These characteristics are useful when we know how to do something well and we want to ensure

that others do it the same way. “A process is a collection of procedures, organised so that we

build products to satisfy a set of goals or standards. In fact, the process may suggest that we

choose from several procedures, as long as the goal we are addressing is met. For instance, the

process may require that we check our design components before coding begins. The checking

2 Kaur, R., Sengupta J., (2011) Software Process Models and Analysis on Failure of Software Development
Projects, International Journal of Scientific & Engineering Research Volume 2, Issue 2, February-2011 ISSN
2229-5518

10

can be done using informal reviews or formal inspections, each an activity with its own

procedure, but both addressing the same goal”.3

2.2 Software Process Models (Methodologies)
Many process models are described in the software development literature. Some are

prescriptions for the way software development should progress and others are descriptions of

the way software development is done.

There are several reasons for modelling a process:

 When a group writes down a description of its development process, it forms a common

understanding of the activities, resources and constraints involved in software

development

 Creating a process model helps the development team find inconsistencies,

redundancies and slip-ups. As these are noted and corrected, the process becomes more

effective

 The model should reflect the goals of development, such as building high-quality

software, finding faults early in development and meeting required budget and

scheduled constraints. As the model is built, the development team may decide on

certain measures to be implemented in the model, e.g. the team may include more

frequent code reviews so that there are less errors.

 Every process should be tailored for the special situation in which it will be used.

Building a process model helps the development team understand where that tailoring

is to occur.

Every software development process model includes system requirements as input and a

delivered product as output. Furthermore, I will explain two of the most common software

development methodologies: Waterfall and Scrum.

2.2.1 Waterfall model
One of the first models to be introduced is Waterfall (Figure 3), where the stages are described

as cascading from one to another. As shown in Figure 3, one development stage should be

completed before the next begins. Waterfall can be described as a sequence of phases which

form a software development life-cycle.

3 Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition. Pearson, Prentice Hall, N.J.

Page 46

11

Figure 3 Waterfall Model

Figure 4 Waterfall Pros and Cons

Advantages4 5 Disadvantages6

The staged development cycle

enforces discipline

 High effort and costs for writing and

approving documents for each

development phase.

Every phase has a defined start and

end point, and progress can be

conclusively identified

 Extremely hard to respond to

changes

The emphasis on requirements and

design before writing a single line of

code ensures minimal wastage of time

and effort and reduces the risk of

schedule slippage

 When iterating a phase the iteration

takes considerable effort for rework.

When the system is put to use the

customer discovers problems of early

4 https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-
development/
5 Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition. Pearson, Prentice Hall, N.J.

Page 46

6 Petersen, K., Wohlin, C., Baca, D., The Waterfall Model in Large-Scale Development, Blekinge Institute of Technology,

https://www.researchgate.net/publication/30498645

https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
https://www.researchgate.net/publication/30498645

12

phases very late and system does not

reflect current requirements.

Problems of finished phases are left

for later phases to solve

Management of a large scope of

requirements that have to be

baselined to continue with

development.

Big-bang integration and test of the

whole system in the end of the project

can lead to unexpected quality

problems, high costs, and schedule

overrun.

Lack of opportunity for customer to

provide feedback on the system.

The waterfall model increases lead-

time due to that large chunks of

software artifacts have to be approved

at each gate.

2.2.2 Agile methods
Many of the software development processes proposed and used from the 1970s through the

1990s tried to impose some form of rigor on the way in which software is conceived,

documented, developed and tested. In the late 1990s some developers who had resisted these

too formal ways of working have constructed and modelled their own principles, trying to

highlight the roles that flexibility could play in producing software quickly and capably. They

codified their thinking in an “Agile manifesto” that focuses on 12 principles of an alternative

way of thinking about software development7:

1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

7 https://agilemanifesto.org/iso/en/principles.html

https://agilemanifesto.org/iso/en/principles.html

13

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity--the art of maximizing the amount of work not done--is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behaviour accordingly.

The overall goal of agile development is to satisfy the customer by early and continuous

delivery of valuable software. Many customers have business needs that change over time,

reflecting not only newly discovered needs but also the need to respond to changes in the

marketplace. For example, as software is being designed and constructed, a competitor may

release a new product that requires a change in the software’s planned functionality. In addition

to that, a government agency or a standards body may issue a new regulation or standard that

affects the software’s design or requirements. General idea about agile is that keeping it flexible

in the development process ensures constant availability to change and adapt. There are many

examples of agile processes in current literature and each is layed out on a set of principles that

implement the core of the agile manifesto. Examples:

 Extreme programming (XP) – A set of techniques for leveraging the creativity of

developers and minimizing the amount of administrative overhead.

 Scrum – It uses iterative development, constructed of sprints (2 week – 4 week

duration), to implement the product’s backlog of prioritized requirements. Multiple self-

organizing and autonomous teams implement product increments in parallel.

Coordination is done at a brief daily status meeting called a “scrum”.

14

 Lean8 - 7 principles: Eliminate waste, Amplify learning, Decide as late as possible,

Deliver as fast as possible, Empower the team, Build integrity, See the whole.

 Kanban9 - Work items are visualised to give participants a view of progress and process,

from start to finish – usually via a Kanban board. The aim is to provide a visual process

management system which helps decision-making about what, when and how much to

produce. Manages workflow.

3 Planning and Managing a Project

3.1 Tracking Progress
The software development cycle includes many steps, some of which are repeated until the

system is complete and the customers and users are satisfied. However, before committing

funds and resources for a software development or maintenance project, a customer usually

wants an estimate of how much the project will cost and how long the project will take. A

project schedule describes the software development cycle for a particular project by

enumerating the phases or stages of the project and breaking each into discrete activities to be

done. The schedule also portrays the interactions among these activities and estimates the time

that each task or activity will take. That makes the schedule a timeline that shows when

activities will begin and end, and when the related development products will be ready. To

identify activities we must use analysis and synthesis to break down the problem into its

component part, figure out a solution for each part, and then put the pieces together to form a

coherent whole. We can use the same approach to determine project schedule. We begin by

working with customers and potential users to understand what is it that they need and want.

We list all project deliverables i.e. the items that the customer expects to see during project

development. Next we determine what activities must take place in order to produce these

deliverables. Certain events are designated to be milestones, indicating to us and our customers

that a measurable level of progress has been made. For example, when the requirements are

documented, inspected for consistency and completeness, and turned over to the design team,

the requirements specification may be a project milestone. We must distinguish between

milestones and activities. An activity ia a part of the project that takes place over a period of

time, whereas a milestone is the completion of an activity – a particular point in time. To sum

8 Poppendieck, M., Poppendieck, T., (2003): Lean Software Development: An Agile Toolkit. Addison-Wesley
Professional
9 Gross, J. M., McInnis, K. R., (2003): Kanban Made Simple: Demystifying and Applying Toyota's Legendary
Manufacturing Process. AMACOM

15

up, an activity has a beginning and an end, while a milestone is the end of a specifically

designated activity.

Figure 5 Phases, steps and activities in a project

Analysis of this kind is also sometime described as generating a work breakdown structure for

a given project, because it explains the project as a set of visible pieces of work. It is also worth

noticing that the activities and milestones are items that both customer and developer can use

to track development or maintenance. At any point in the process, the customer may want to

follow the project’s progress. One can then point to activities, indicating what work is under

way, and to milestones, indicating what work has been completed. Modern project tools such

as Microsoft Project can also visualise current activity status, indicate interdependence of the

work units or of the parts of the project that can be developed concurrently.

Each activity can be described with four parameters: the precursor, duration, due date, endpoint.

A precursor is an event or set of events that must occur before the activity can begin; it describes

the set of conditions that allow the activity to begin. The duration is the length of time needed

to complete the activity. The due date is the date by which the activity must be completed, often

determined by contractual deadlines. Signifying that an activity has ended, the endpoint is

usually a milestone or a deliverable.

There are many tools that can be used to keep track of a project’s progress. Some are manual,

others are simple spreadsheet applications, and still others are sophisticated tools with complex

graphics. Many project management software systems draw a work breakdown structure and

also assist the project manager in tracking progress by step and activity. A project management

16

package my draw a Gantt chart, a visualisation of the project where the activities are shown in

parallel, with the degree of completion indicated by color or icon. (See Figure 5)

Figure 6 Gantt chart

17

Figure 7 Resource histogram

Figure 8 Tracking planned vs. Actual expenditure

18

3.2 Project personnel
To determine the project schedule and estimate the associated efforr and costs, we need to know

approximately how many people will be working on the project, what tasks will they perform

and what abilities and experience must they have in order to their jobs effectively and to the

best of their ability.

No matter the model there are certain activities necessary to any software project. Key project

activities are likely to include:

1. Requirements gathering / analysis

2. System design / Architecture

3. Development

4. Implementation / Integration

5. Testing

6. Training

7. Maintenance

8. Quality Assurance

Once we have decided on the roles of the project team members, we must decide which kinds

of people we need in each role. Project team members may differ in many ways, and it is not

enough to say that a project needs an analyst, two designers, and five programmers, for

example. Two people with the same job title my differ in at least one of the following ways:

 Ability to perform the work

 Interest in work

 Experience with similar applications

 Experience with similar tools or languages

 Experience with similar techniques

 Experience with similar development environments

 Training

 Ability to communicate with others

 Ability to share responsibility with others

 Management skills

Each of these characteristics can affect an individual’s ability to perform productively. These

variations help to explain why one programmer can write a particular routine in a day while

19

another requires a week. The differences can be critical, not only to schedule estimation or cost

estimation but also to the general success of the project.

3.3 Effort estimation
One of the crucial aspects of project planning and management is understanding how much is

the project likely to cost. Cost overruns can cause customers to cancel projects and cost

underestimates can force a project team to invest much of its time without financial

compensation. A good cost estimate early in the project’s life helps the project manager to know

how many developers will be required and to arrange for the appropriate staff to be available

when they are needed. The project budget pays for several types of costs: facilities, staff,

methods and tools. For some projects the environment may already exist, so the costs are well

understood and easy to estimate. But for other projects, the environment may have to be created.

For almost all software development projects the biggest component of cost is effort. We must

determine how many mandays of effort will be required to complete the project. Effort is surely

the cost component with the greatest degree of uncertainty.

Cost schedule and effort estimation must be done as early as possible during the project’s life-

cycle, since it affects resource allocation and project feasibility. Estimations should be done

repeatedly throughout the life-cycle: as aspects of the project change, the estimate can refined.

3.4 Risk Management
As previously stated, many software project managers take steps to ensure that their projects

are done on time and within effort and cost constraints. however, project management involves

far more than tracking effort and schedule. Project manager must determine whether an

unwelcome events may occur during development or maintenance and make plans to mitigate

those events or, if they are inevitable, minimize their consequences. A risk is an unwanted event

that has negative consequences. Project managers must engage in risk management to

understand and control the risks on their projects. Boehm’s Risk items.10

10 Boehm, B.W. (1989): Software Risk Management, IEEE Computer Society Press

20

We distinguish risks from other projects by looking for three things11:

1. A loss associated with the event. The event must create a situation where something

negative happens to the project: a loss of time, quality, money, control, …

2. The likelihood that the event will occur. We must have some idea of the probability that

the event will occur. The likelihood of the risk, measured from 0 (impossible) to 1

(certain) is called risk probability. When the risk probability is 1, then the risk is called

a problem, since it is certain to happen.

3. The degree to which we can change the outcome. For each risk, we must determine what

we can do to minimise or avoid the impact of the event. Risk control involves a set of

actions taken to reduce or eliminate risk.

We can quantify the effects of the risks we identify by multiplying the risk impact by the risk

probability, so that we would get risk exposure. E.g. if the likelihood that the requirements will

change after design is 0.3 and the cost ro redesign to new requirements is HRK50,000.00 then

11 Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition. Pearson, Prentice
Hall, N.J. Page 119

Boehm identified 10 risk items:

1. Personnel shortfalls

2. Unrealistic schedules and

budgets

3. Developing the wrong

software functions

4. Developing the wrong user

interface

5. Gold plating

6. Continuing stream of

requirements changes

7. Shortfalls in externally

performed tasks

8. Shortfalls in externally

furnished tasks

9. Real-time performance

shortfalls

10. Straining computer science

capabilities

Figure 9 Boehm's Top 10 Risk items

21

the risk exposure would be HRK15,000.00. Naturally, the risk probability can change over time,

as can impact, so it is project manager’s duty to track these parameters and plan for the change

of events accordingly.

There are three strategies for risk reduction12:

1. Avoiding risk - by changing requirements for performance or functionality

2. Transferring risk – by allocating risks to other systems or by buying insurance to cover

any financial loss should the risk become a reality

3. Assuming the risk – by accepting it and controlling it with the project’s resources

To help make a decision on risk reduction, project manager must take into account the cost of

reducing the risk. That is called risk leverage – the difference in risk exposure divided by the

cost of reducing the risk. In other words, risk reduction leverage is

If the leverage value is not high enough to justify the action, then the project manager can look

for other less costly or more effective reduction techniques.

It is useful to record decisions in a risk management plan, so that both the customer and the

development team can review how problems are to be avoided, as well as how they are to be

handled should they arise. Then, the project manager should monitor the project as development

progresses, periodically re-evaluating the risks, their probability and their likely impact.

3.5 The Project Plan
To communicate risk analysis and management, project cost forecasts / estimates, schedules,

activities and milestones, there should be a project plan. The plan puts in writing the customer’s

needs, as well as what is to be done to meet those needs.

A good project plan should include the following items:

1. Project scope

2. Project schedule

3. Project team organisation

4. Technical description of the proposed system

12 Boehm, B.W. (1989): Software Risk Management, IEEE Computer Society Press

(Risk exposure before reduction – risk exposure after reduction)

/ (cost of risk reduction)

22

5. Project standards, procedures and proposed techniques and tools

6. Quality assurance plan

7. Test plan

8. Documentation plan

9. Training plan

10. Risk management plan

11. Maintenance plan

The scope defines the system boundaries. It explains what will be included in the system what

will not be included. It provides clarification with the customer that we understand what is

wanted, and vice versa. The schedule can be expressed using a work breakdown structure, the

deliverables, and a timeline to show what will be happening at each point during the project

life-cycle. A Gantt chart can be useful in illustrating the parallel nature of some of the

development tasks.

The project plan also contains lists of people on the development team, how they are organised,

and each of them will be tasked with. Not everyone will be needed during the whole duration

of the project, so the plan usually holds a resource allocation chart to show staffing levels at

different times.

For large projects, it may be appropriate to include a separate testing team to be included.

Testing requires a great deal of planning to be effective. The test plan should state how test data

will be generated, how each program module will be tested, how program modules will be

integrated and then tested, how the entire system will be tested and who will perform each type

of testing. Sometimes, systems are produced in stages or phases and the test plan should explain

how each stage will be tested. When a new functionality is implemented to a system in stages,

the test plan should address regression testing, to ensure that the existing functionalities still

work correctly.

There are three milestones common to all software development processes that can serve as a

basis for both technical process and project management13:

 Life-cycle objectives

 Life-cycle architecture

 Initial operational capability

13 Boehm, B.W. (1989): Software Risk Management, IEEE Computer Society Press

23

Life-cycle objective milestone is to make sure the stakeholders agree with the system’s goals.

The key stakeholders act as a team to determine the system boundary, the environment in which

the system will operate and the external systems with which the system must interact.

Stakeholders then work through the scenarios of how the system will be used. The scenarios

can be expressed in terms of prototypes, screen layouts, data flows, … If the system is business-

critical, the scenarios should also include instances where the system fails, so that designers can

determine how the system is supposed to react. The end result is an initial life-cycle plan14:

 Objectives: Why is the system being developed?

 Milestones and schedules: What will be done by when?

 Responsibilities: Who is responsible for a function?

 Approach: How will the job be done, technically or managerially?

 Resources: How much of each resource is needed?

 Feasibility: Can this be done, and is there a good business case for it?

Life-cycle architecture is coordinated with the life-cycle objectives. The purpose of the life-

cycle architecture milestone is defining both the system and the software architectures. The

architectural choices must address the project risks addressed by the risk management plan,

focusing on system evolution in the long term as well as system requirement in the short term.

The key elements of the initial operational capability are the readiness of the software itself, the

site at which the system will be used and the selection and training of the team that will use it.

4 Capturing the Requirements and System Design

4.1 Defining the requirement
A customer who asks a software development company to build a new application or system

should have some notion or a business case on what the system should do. Often, the customer

wants to automate a manual task, such as paying bill electronically instead of heading to the

post office. Other times, a customer wants to enhance a current manual or already automated

system. For example, the company is accepting VISA cards and now wants to accept

MasterCard too.

A requirement is an expression of desired behaviour. For example, suppose a customer wants

to build a system to create a weekly report of all newly onboarded merchants on their payment

processing platform. One requirement may be to be able to filter the merchants by transaction

14 Boehm, B.W. (1989): Software Risk Management, IEEE Computer Society Press

24

volume, second requirement may be to filter by the region the merchant operates from. Bear in

mind that neither of these two requirements specify how the system is to be implemented. There

is no mention of what database-management system to use, whether a client-server architecture

will be employed, how much memory the computer is to have or what programming language

must be used to develop the system. These implementation-specific descriptions are not

considered to be requirements. The primary objective of the requirements gathering phase is to

understand the customer’s problems and wants. So, the requirements gathering phase is focused

on the customer and the problem, not the solution or the implementation. One can say that

requirements designate what behaviour the customer wants, without saying how that behaviour

will be realised.

Stakeholders15 to the requirements gathering phase:

 Clients – ones paying for the software to be developed.

 Customers – ones who buy the software after it is developed.

 Users – ones who are familiar with the current system and will use the future system

 Domain experts – ones who are familiar with the problem that the software must

automate

 Market researchers – ones who have conducted surveys to determine future trends and

potential customers’ needs

 Software engineers or other technology experts – ones who ensure that the product is

technically and economically feasible. They can educate the customer about innovative

hardware and software technologies. They can advise on a functionality that takes

advantage of these technologies. They can also estimate the cost and development time

of the solution

Each stakeholder has a particular perspective on the system and how it should work. Often are

these perspectives in a conflict. One of the many skills of a requirements analyst or a business

analyst is the ability to understand each perspective and capture the requirements in a way that

it reflects the concerns of each participant.

15 Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition. Pearson, Prentice
Hall, N.J. Page 119

25

4.2 Types of requirements
We differ between two types of requirements:

 A functional requirement – defines the boundaries of the solution space for the problem.

The solution space is the set of possible ways that software can be designed to

implement the requirements. It describes the functions a software must perform. A

function is nothing but inputs, its behavior, and outputs. It can be a calculation, data

manipulation, business process, user interaction, or any other specific functionality

which defines what function a system is likely to perform. Functional software

requirements help you to capture the intended behavior of the system. This behavior

may be expressed as functions, services or tasks or which system is required to

perform.16

 Non-functional requirement – defines a quality characteristic that the software solution

must possess. defines the quality attribute of a software system. They represent a set of

standards used to judge the specific operation of a system. A non-functional requirement

is essential to ensure the usability and effectiveness of the entire software system.

Failing to meet non-functional requirements can result in systems that fail to satisfy user

needs. 17

A design constraint is a design decision, such as choice of platform or interface components,

that has already been made and now restricts the set of solutions to our problem. A process

constraint is a restriction on the techniques or resources that can be used to build the system.

We can also differentiate between three categories of requirements:

1. Requirements that must be met – Essential

2. Requirements that are highly desirable but not necessary (Desirable)

3. Requirements that are possible but could be eliminated (Optional)

4.3 Design process
At this point in the development process the development team has a good understanding of the

customer’s problem and the requirements specifications which describe what an acceptable

software solution will look like is known. Design is the creative process if figuring out how to

implement all of the customer’s requirements. Early design decisions address the system’s

16 https://www.guru99.com/functional-vs-non-functional-requirements.html
17 https://www.guru99.com/functional-vs-non-functional-requirements.html

https://www.guru99.com/functional-vs-non-functional-requirements.html
https://www.guru99.com/functional-vs-non-functional-requirements.html

26

architecture explaining how compartmentalize the system into units, how the units relate to one

another, and describing any externally visible properties of the units. 18

6 ways to use architectural models:

1. To understand the system: what it will do and how it will do it

2. To determine how much of the system will reuse elements of previously build systems

and how much of the system will be reusable in the future

3. To provide a blueprint for constructing the system, including where the load bearing

parts of the system may be (design decisions that will be difficult to change later)

4. To reason about how the system might evolve, including performance, cost and

prototyping concerns

5. To analyse dependencies and select the most appropriate design, implementation and

testing techniques

6. To support management decisions and understand risks inherent in implementation and

maintenance19

Popular architecture design methods:

 Functional decomposition: This method breaks down an operation to its foundational

steps. System-level functions are decomposed to subfunctions which are then assigned

to smaller modules. The design also describes which modules (subfunctions) call each

other.

 Feature-oriented design: A type of functional decomposition that assignes features to

modules. The high-level design describes the system in terms of a service and a

collection of features. Lower-level designs provide detail as to how data are distributed

among modules and how the distributed data realise the conceptual models.

 Process-oriented decomposition: This method partitions the system into concurrent

processes. The high-level identifies the system’s main tasks, which operate mostly

independently of each other, assigns tasks to runtime processes and explains how the

tasks coordinate with each other. Lower-level designs describe the process in more

detail.

18 Len, B., Clements, P., Kazman, R., (2013): Software Architecture in Practice, 3rd Edition. Addison-Wesley
Professional
19 Garlan, D., (2000): Software Architecture: a Roadmap

27

 Data-oriented decomposition: This method partitions the system into concurrent

processes. The high-level design describes conceptual data structures, and lower-level

designs provide detail as to how data are distributed among modules and how the

distributed data realise the conceptual models.

 Event-oriented decomposition: This method focuses on the events that the system must

handle and assigns responsibility for events to different modules. The high-level design

catalogues the system’s expected input events, and lower-level designs decompose the

system into states and describe how events trigger transformations

 Object-oriented design: This method assigns objects to modules. The high-level design

identifies the system’s object types and explains how objects are related to one another.

Lower-level designs detail the object’s attributes and operations.20

Figure 10 Levels of decomposition

How we choose which design method to use depends on the system we are developing:

 Which aspects of the system’s specification are most prominent (functions, object,

features)?

 How is the system’s interface described (input events, data streams)?

A good design is one that describes a system able to meet all of the requirements. However,

other high-level concepts are important, too. For example, it is important that the design is

20 Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition. Pearson, Prentice
Hall, N.J. Page 232 - 233

28

adequate for the long-term intended use of the system and encompasses the following high-

level notions of quality:

 Reusability: Are components of this design likely to be reused in later systems? If so,

are they of sufficient quality to be reused?

 Understandability: is the design well structured and documented so that it will be easy

for maintenance department to understand where in the system modifications need to be

made?

 Modifiability: Will the system described in this design be easy enough to maintain after

implementation is over? Or will changes likely have unintended consequences?

During the process of design it is important that other developers are an implicit factor, since

the choice of design method depends on who will have to read and understand the design. Also,

since designs are built from components, the interrelationships among components and data

must be well-documented. Other developers should also participate in design reviews,

evaluating the design at several stages and making suggestions for improvement. For all these

reasons, it is essential that a design is documented clearly and completely, with discussions of

the options faced and the decisions made.

5 Writing the Programs and Testing

5.1 Code
The task of writing code that implements the design can be intimidating for a couple of reasons.

First, the designers may not have addressed all of the edge cases of the platform and

programming environment; structures and relationships that are easy to describe with charts

and tables are not always straightforward to be written as code. Second, code must be written

in a way that is understandable not only to the author but also to all others that will be testing

the code, taking over that part of the backlog or as the system evolves over time by someone

else. Third, programmers must take advantage of the characteristic of the design’s organisation,

the data’s structure, and the programming language’s constructs while still creating code that is

easily reusable.

When writing code, the following items should be considered:

 Organisational standards and guidelines

 Reuse of code from other projects

29

 Writing code to make it reusable on future projects using the low-level design as an

initial framework, and moving in several iterations from design to code

 Incorporating a system-wide error-handling strategy

 Using documentation within programs and in external documents to explain the code's

organization, data, control and function, as well as design decisions

 Preserving the quality design attributes in the code

 Using design aspects to suggest an implementation language21

Many corporate or organisational standards and procedures focus on the description

accompanying a collection of programs. Program documentation is the set of written

description that explain to a reader what the programs do and how they do it. Internal

documentation is descriptive and is written directly within the code.

Standards and procedures can help a developer organise his/her thoughts and avoid mistakes.

Some of the procedures involve methods of documenting your code so that it is clear and easy

to follow. Such documentation allows you to leave and return to your work without losing track

of what you had been doing. Standardised documentation also helps in locating faults and

making changes, because it clarifies which sections of the program perform which functions.

5.1.1 Extreme programming22

One of the most popular programming methods in Agile is extreme programming. It is made

up of a set of simple, yet interdependent practices. These practices work together to form a

whole that is greater than its parts.

Customer team member

The customer and developer are to work closely together with each other so that they are both

aware of each others problems and are working together to solve those problems.

The customer of an XP team is the person who defines and prioritizes features. The best case is

for the customer to work in the same room as the developers. Next best is if the customer works

100 feet of the developers.

21 Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition. Pearson, Prentice
Hall, N.J.
22 Robert, C. M. (2002): Agile Software Development: principles, patterns, and pracites. Pearson.

30

User stories

When using XP, developers get the sense of the details of the requirements by talking them

over with the customer, but the details need not to be captured. Rather, the customer writes

down a few words on an index card that all agree will remind them of the conversation. The

developers write down an estimate on the card at roughly the same time that the customer writes

it. A user story is a mnemonic token of an ongoing conversation about a requirement. It is a

planning tool that the customer uses to schedule the implementation of a requirement based

upon its priority and estimated cost.

Short cycles

An XP project delivers working software every two weeks. Each of these two-week iterations

produces working software that addresses some of the needs of the stakeholders in order to get

their feedback. An iteration is a representation of minor delivery that may or may not be put in

production. It is a collection of user stories selected by the customer according to a budget

established by the developers.

The developers set a budget for an iteration by measuring how much they got done in the

previous iteration. The customer may select any number of stories for the iteration, so long as

the total of their estimates does not exceed that budget.

XP creates a release plan that maps out the next six iterations or so. A release is usually three

months worth of work. It represents a major delivery that can be put in production. A release

plan consists of prioritized collections of user stories that have been selected by the customer

according to a budget given by the developers.

Acceptance tests

The details about the user stories are captured in the form of acceptance test specified by the

customer. The acceptance test for a story are written immediately preceding, or even concurrent

with, the implementation of that story. Acceptance tests are written in a scripting language that

allows them to be run automatically and repeatedly. Together, they act to verify that the system

is behaving as the customer have specified. Once an acceptance test passes, it is added to the

body of passing acceptance test and is never allowed to fail again. This growing body of

acceptance tests is run multiple times per day, every time the system is build. If an acceptance

test fails, the build is declared a failure.

31

Pair programming

All production code is written by pairs of programmers working together at the same

workstation. One member of each pair drives the keyboard and types the code. The other

member of the pair watches the code being typed, looking for errors and improvements. The

two interact intensely. Both are completely engaged in the act of writing software. The roles

change frequently. The driver may get tired or stuck, and his pair partner will grab the keyboard

and start to drive. The keyboard will move back and forth between them several times in an

hour. The resultant code is designed and authored by both members. Pair membership changes

at least once per day so that every programmer works in two different pairs each day. This helps

increase the spread of knowledge between the team.

Test-driven development

All production code is written in order to make failing unit tests pass. First developers write a

unit test that fails because the functionality for which it is testing does not exist. Then the

developers write the code that makes that test pass.

5.2 Testing
Software testing is defined as an activity to check whether the actual results match the expected

results and to ensure that the software system is defect free. It involves execution of a software

component to evaluate one or more properties of interest. Software testing also helps identify

errors, gaps or missing requirements in contrary to the actual requirements. It can be done

manually or using automated tools. 23

Testing is important because software bugs could be expensive or even dangerous. Software

bugs can potentially cause monetary and human loss.

There are multiple reasons for a program failure:

 The specification may be wrong or has a missing requirement

 The specification may contain a requirement that is impossible to implement, given the

prescribed hardware and software

 The system design may contain a fault

 The program code may be wrong

23 https://www.guru99.com/software-testing-introduction-importance.html

https://www.guru99.com/software-testing-introduction-importance.html

32

Testing is typically classified into three categories as shown in the table below.

Figure 11 Types of Testing

Testing Category Types of Testing

Functional Testing

Unit Testing

Integration testing

Smoke testing

User Acceptance Testing

(UAT)

Localisation

Non-Functional

Testing

Performance

Endurance

Load

Volume

Scalability

Maintenance
Regression

Maintenance

Unit Testing – a level of software testing where individual units / components of a software are

tested. The purpose is to validate that each unit of the software performs as designed. A unit is

the smallest testable part of any software. Unit testing increases confidence in

changing/managing code. Catching a bug or a defect during Unit testing is much more cost-

efficient than realising there is a bug to be fixed during integration testing.

Integration testing – a level of software testing where individual units are combined and tested

as a group. The purpose of this level of testing is to expose faults in the interaction between

integrated units.

System testing – a level of software testing where a complete and integrated software is tested.

The purpose of this test is to evaluate the system’s compliance with the specified requirements.

Underlying analogy can be explained on an example of a car. All the parts such as the wheel,

steering wheel, lights, … all is produced separately and unit tested separately. When two or

more units are ready, they are assembled and Integration Testing is performed. When the whole

car is integrated, System Testing is performed.

User Acceptance Testing (UAT) – level of software testing where a system is tested for

acceptability. The purpose of this test is to evaluate the system’s adherence to business

requirements and assess whether it is acceptable for delivery. Acceptance testing is performed

to act as a final confirmation that the car is ready to be made available to the end-users.

33

6 Delivering and Maintaining the System

6.1 Delivery
Many software developers assume that system delivery is a formality. However, even with

plug-and-play systems (where developers hand over the system to the customer and are not

responsible for its maintenance), delivery involves more than putting the system in place. It is

the time during development when the development team helps users to understand and feel

comfortable with the product. If delivery is not successful, users will not use the system

properly and may be unhappy with its performance. In either case, users are not as productive

or efficient as they could be, and the care taken to build a high-quality system will be wasted.

As the system is designed, aids that help users learn how to use the system are planned and

developed. Accompanying the system is documentation to which user refer for problem-solving

or further information.

6.2 Maintenance
Delivery of a system to the customer does not have to mark the end of the software developers’

involvement with the system. In fact, many systems require continuous change, extending past

delivery. In general, the more closely a system is correlated to the real world, the more likely

it will be to require changes (and the more difficult those changes will be to make). Software

maintenance deals with managing change in this part of the life-cycle.

Maintaining a system requires its own set of skills, in addition to those required for software

development. Team in charge of maintaining a system must continuously interact with

colleagues, customers, and users in order to effectively define problems and find their causes.

Maintenance team must also need to understand the “big picture” of how software systems,

with many complex interactions among their components, interact with the environment.

Impact analysis, which builds and tracks links among requirements, design, code and test cases,

is necessary to evaluate the effects of a change in one component on the rest of the systems.

Software maintenance is a part of the Software Development Life Cycle. Its main purpose is to

modify and update software application after delivery to correct faults and to improve the

performance of the system. It is a very broad activity that takes place soon after the development

completed. It optimizes the system’s performance by reducing errors, eliminating useless

development and applying advanced development. Software development gets completed

34

within 5 years (depends on the complexity) while software maintenance is an ongoing activity

and can be extended up to 15-20 years.24

Software Maintenance falls into the following categories25:

1. Adaptive – some modifications are being done in the system to keep it compatible with

the changing environments

2. Perfective – checks for fine tuning of all elements of the system, functionalities and

abilities to improve system performances

3. Corrective – detects bugs and errors in the existing solution to fix them and make the

system work efficiently

4. Preventive – preventive software maintenance helps in preventing the system from any

upcoming vulnerabilities

Software maintenance is required for several reasons that are listed below:

1. Bug fixing – error searching in the code and fixing it

2. Capability enhancement for changing environment – improvement of current features

and functions to make the system more compatible for changing the environment

3. Removal of outdated functions – functionalities that are not in use anymore are being

removed

4. Performance improvement – it is done to cope up with new requirements

7 Conclusion

Software development is hardly more than a few decades old and has only gained the attention

of non-tech people in the last 20 years. Even though I have in this paper stated a number of

ways how to approach creating a project plan, gather requirements, design and create a software

system these are not standards, but ways of working. Software development industry is not as

mature as the construction industry for example. While there are some differences to the

construction industry there are similarities in a sense that both industries are creating something

to according to the customer’s needs and wants. Traditionally, companies have built up their

own software development groups, hiring architects and developers to build software for them.

But in the construction world, what company hires a full-time architect as an employee, hires

24 https://scideas.in/2018/12/17/why-software-maintenance-is-important/
25 https://www.coderhood.com/software-maintenance-understanding-the-4-types/

https://scideas.in/2018/12/17/why-software-maintenance-is-important/
https://www.coderhood.com/software-maintenance-understanding-the-4-types/

35

their own construction crew or purchases equipment needed to do the job? Unless they are a

construction company or their industry revolves around construction, the answer is none.

There is no need for companies that do not deal with software to have their own internal

software groups. A company can be good at what it originally is doing, it is hard for a company

to be equally great at software development and at what they sell. Software is slowly being

outsourced to companies who actually only offer those services. Some advantages to hire an

outside software company:

 IT is not the company’s core business, they are not the best at that

 Technology companies bring knowledge from the outside which helps create new ideas

 It creates a more competitive environment to help drive down costs and better the quality

of service

 External companies are more easily held accountable

 Easier to ramp up and down, as needed

 The world of software is getting more complex and it takes a full time effort to stay in

the loop of the latest technologies

As the world turns more toward outsourcing software services such as software development

projects, companies will get better software at a greater value to the company and at a much

lower risk.

8 Sources

Pfleeger S.L., Atlee, J.M. (2009): Software Engineering: Theory and Practice. 4th Edition.

Pearson, Prentice Hall, N.J.

Royce, W.: Managing the development of large software systems: Concepts and techniques. In:

Proc. IEEE WESCOM, IEEE Computer Society Press (1970)

Sommerville, I.: Software Engineering (7th Edition). Pearson Eductation Ltd. (2004)

Fundamental Approaches to Software Engineering: 13th International Conference, FASE 2010,

Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS

2010, Paphos, Cyprus, March 20-28, 2010. Proceedings

Kaur, R., Sengupta J., (2011) Software Process Models and Analysis on Failure of Software

Development Projects, International Journal of Scientific & Engineering Research Volume 2,

Issue 2, February-2011 ISSN 2229-5518

36

Understanding the Pros and Cons of the Waterfall Model of Software Development

https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-

model-of-software-development/

Petersen, K., Wohlin, C., Baca, D., The Waterfall Model in Large-Scale Development, Blekinge

Institute of Technology, https://www.researchgate.net/publication/30498645

Agile Manifesto https://agilemanifesto.org/iso/en/principles.html

Poppendieck, M., Poppendieck, T., (2003): Lean Software Development: An Agile Toolkit.

Addison-Wesley Professional

Gross, J. M., McInnis, K. R., (2003): Kanban Made Simple: Demystifying and Applying

Toyota's Legendary Manufacturing Process. AMACOM

Boehm, B.W. (1989): Software Risk Management, IEEE Computer Society Press

Functional Requirements vs Non Functional Requirements: Key Differences

https://www.guru99.com/functional-vs-non-functional-requirements.html

Len, B., Clements, P., Kazman, R., (2013): Software Architecture in Practice, 3rd Edition.

Addison-Wesley Professional

Garlan, D., (2000): Software Architecture: a Roadmap

Robert, C. M. (2002): Agile Software Development: principles, patterns, and pracites. Pearson.

What is Software Testing? Introduction, Definition, Basics & Types

https://www.guru99.com/software-testing-introduction-importance.html

Why Software Maintenance is Important? https://scideas.in/2018/12/17/why-software-

maintenance-is-important/

Software Maintenance, Understanding the 4 Types https://www.coderhood.com/software-

maintenance-understanding-the-4-types/

9 List of Figures
Figure 1 Problem analysis (page 5)

Figure 2 Problem synthesis (page 6)

Figure 3 Waterfall model (page 7)

Figure 4 Waterfall Pros and Cons (page 7)

https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
https://www.researchgate.net/publication/30498645
https://agilemanifesto.org/iso/en/principles.html
https://www.guru99.com/functional-vs-non-functional-requirements.html
https://www.guru99.com/software-testing-introduction-importance.html
https://scideas.in/2018/12/17/why-software-maintenance-is-important/
https://scideas.in/2018/12/17/why-software-maintenance-is-important/
https://www.coderhood.com/software-maintenance-understanding-the-4-types/
https://www.coderhood.com/software-maintenance-understanding-the-4-types/

37

Figure 5 Phases, steps and activities in a project (page 15)

Figure 6 Gantt chart (page 16)

Figure 7 Resource histogram (page 17)

Figure 8 Tracking planned vs. Actual expenditure (page 17)

Figure 9 Boehm's Top 10 Risk items (page 20)

Figure 10 Levels of decomposition (page 27)

Figure 11 Types of Testing (page 32)

