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Abstract 

 

Which characteristics of a portfolio are important, how can we select an optimal portfolio and 

which portfolio a risk-averse investor should avoid? 

Pioneering theory about portfolio selection methods introduced by Harry Markowitz in the 

1950’s has helped to solve some of these issues in financial world. His mean-variance 

portfolio theory has yielded tools for the selection of efficient portfolios and is a backbone of 

all contemporary optimization methods. Although Markowitz’s portfolio theory has faced 

many challenges in practice, due to some assumptions that are not mirroring the real world, it 

is a still basic model that underlies modern portfolio theory. The model has also been 

criticized because it is suitable for elliptical distributions and if returns are not elliptical, 

analysis can yield wrong conclusions. Due these drawbacks many risk measures have been 

introduced since. One of them is Value at Risk, however its sub-additivity property issues and 

ignorance of the worst losses in the far tail has been overcome with another risk measure 

Expected Shortfall or also called Conditional Value at Risk (CVaR). 

This paper explores the performance of two portfolio optimization methods, Conditional 

Value at Risk and Mean-Variance portfolio optimization during two different periods, one 

before and other during the corona crisis. This approach is tested in R on a portfolio 

composed of four NASDAQ index stocks (Alphabet.inc (GOOGL), Tesla.inc (TSLA), 

Facebook.inc (FB) and Amazon.inc (AMZN)) to demonstrate whether there is a difference in 

portfolio performance under two different risk measures and different market conditions. 
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Chapter 1 

 

Introduction 

 

1.1 Project Goal and Data 

 

The aim of this thesis is to investigate two mainstream portfolio optimization methods, 

Markowitz mean-variance (MV) and mean-CVaR optimization method in which covariance 

risk is replaced by the conditional Value at Risk as risk measure. Moreover, the goal is to 

compare relative performance between the two optimization methods on the example of four 

NASDAQ composite index stocks during two different time periods. For each asset, a time 

series of weekly stock prices was obtained for two distinct time periods. The first time 

interval is from December 2018 to December 2019 and the second one is from December 

2019 to July 2020.Two distinct time intervals allow better comparison and evaluation of risk 

measures because the chosen periods  capture both positive and negative financial situations 

on the market.The first time interval covers a period with relative financial stability before the 

corona crisis, while the second time interval covers a period of corona outbreak and it  

exhibits big volatility and financial distress. The four stocks in the portfolio were chosen as to 

represent different stock-market segments. Namely, they are Google, Amazon, Facebook and 

Tesla. Well diversified portfolio should consist of at least 15 securities from different sectors, 

but due to computational simplicity here we consider just a simple case of four different 

securities. 

 

 

1.2 Methodology 

 

In this study, we examine the performance of the chosen portfolio using the MV and CVaR 

optimization methods. We implement optimization approaches in R software. These 

optimization methods could be defined using different settings: (i) computing the portfolio 

with the highest return for a given risk, (ii) computing the portfolio with the lowest risk for a 

given return, (iii) computing the portfolio with the highest return/risk ratio.  
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In the first case, variance as risk measure in MV and CVaR constraint cannot be the same if 

asset returns do not exhibit elliptical distribution.  Hence, comparison would be unjustifiable 

and for this reason we will use the second setting minimizing the risk for a given return that 

allows us to compare these two optimization methods. 

The same set of constraints is used to all portfolios and for both approaches, to ensure 

comparability in the outputs. No short sales are allowed. 

 

 

1.3 Paper Structure 

 

Chapter 2 describes the core concepts of mean-variance portfolio theory and examines the 

criticism of this model. Distribution of returns that plays a key role in Markowitz’s portfolio 

theory is analyzed in detail. 

Chapter 3 presents components of mean-variance analysis. It discusses what constitutes 

portfolio`s risk and return and how they are derived. 

Chapter 4 introduces some of downside risk measures and discusses why CVaRis the 

preferred measure of risk to VaR in portfolio optimization 

Chapter 5 gives a brief introduction into basics of statistical software R. It also describes the 

Rmetrics framework used for portfolio selection and optimization. 

Chapter 6 contains implementation and results of mean-variance optimization approach tested 

on a portfolio consisting of four different assets. Two cases are tested. The first one considers 

mean-variance analysis with restrictions set on the weights. The second one considers 

unlimited case of short selling with analytically closed form solution. 

Chapter 7 presents implementation of CVaR in R and provides comparison of the results of 

MV and CVaR optimization methods. 

Finally, conclusion brings important remarks and provides the prospects for further analysis 

of this topic. 
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Chapter 2 

 

Markowitz Portfolio Theory 

 

2.1 Background 

 

Theories and methods developed in the field of economics have had such a great influence on 

a professional behavior and practice in the real world. The methods of modern investment 

theory are widely used by analysts and are becoming increasingly sophisticated. 

Understanding the investment theory can help investors capture extra returns and create new 

products. The beginnings of modern portfolio theory date back to 1952 when Harry 

Markowitz (1952) published a paper entitled “Portfolio Selection”.1 His mean-variance 

portfolio theory provides theoretical framework for analyzing the roles of risk and return in 

portfolio selection. In it, Markowitz showed that the value of investment opportunities can be 

measured by mean return and variance of return. Also, he has developed the concept of 

portfolio diversification. Fundamental principle of diversification is as follows: when 

securities are combined into a portfolio, the resulting portfolio will have a lower level of risk 

than a simple average of the risks of the securities.2 Furthermore, his theory yields a 

mechanism for the selection of portfolios of assets in a way that trades off the expected 

returns and the risk of potential portfolios. Given the technology available at that time, the 

technique was computationally very complex. However, advances in computer technology 

have enabled us to use sophisticated mathematical tools for solving optimization problems 

very easily. Optimization models play an extremely important role in financial decisions 

because of its wide variety of applications and the availability of efficient algorithms. 

Optimization is a branch of applied mathematics which refers to minimization or 

maximization of a given objective function subject to a certain se of constraints. A typical 

optimization model aims to allocate resources among possible alternative uses with the 

purpose of maximizing a function, for example profit. Markowitz portfolio optimization 

problem, also known as mean-variance optimization (MVO), can be formulated in three 

 
1Haugen, R. (1993). Modern investment theory. Englewood Cliffs, NJ: Prentice-Hall. 
2Sharpe, W., Alexander, G. and Bailey, J. (2014). Investments. Upper Saddle River, NJ: Prentice-Hall Internat. 
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different but equivalent ways.3 First, we may choose to find a minimum variance portfolio of 

the assets that yields a target value of expected return. Second, we may want to maximize the 

expected return of portfolio while limiting the variance of its return. Third, we can maximize 

risk-adjusted expected return. 

 

2.2  Model Criticism 

In spite of magnificence and importance of Markowitz`s theory, many critics argue that his 

model is not realistic. Mean–variance portfolio optimization trades off the expected return and 

variability of the underlying assets assuming that the means and variances of the asset returns 

are known. However, in reality they are unknown and need to be estimated using historical 

time series. Computing efficient frontier with such estimates has produced unrealistic 

portfolios that have underperformed. 

Mangram (2013) suggests that some of the key criticisms include4:  

 „Investor ‘Irrationality’ – The assumption is that investors are rational and seek to 

maximize returns while minimizing risk.“ In practice investors seek highly risky 

assets. 

 „Higher Risk = Higher Returns – The assumption that investors are only willing to 

accept higher amounts of risk if compensated by higher expected returns is frequently 

contradicted by investor’s contrary actions.“ 

 Unlimited Access to Capital – Another key assumption is that investors have virtually 

unlimited borrowing capacity at a risk free interest rate 

 „Efficient Markets – Markowitz’ theoretical contributions to MPT are built upon the 

assumption that markets are perfectly efficient.“ 

 „No Taxes or Transaction Costs – Markowitz’ theoretical contributions to MPT do not 

include taxes or transactions costs. “ 

Important criticism is a distribution normality which is not common in real world and is 

explained in the following section. 

 

 
3Cornuejols, G. and Tütüncü, R. (2009). Optimization methods in finance. Cambridge: Cambridge University 
Press. 
4Mangram, Myles. (2013). A Simplified Perspective of the Markowitz Portfolio Theory. Global Journal of 
Business Research. 7. 
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2.3  Normal Distribution 

 

In almost all investment decisions we use random variables. For example, the return on a 

security is a random variable and must be estimated. In order to deal with the uncertainty of 

returns, investors need to have in mind that expected return is only a one-point estimate of the 

entire range of possibilities. Hence, many possible returns can occur. The probability for a 

specific outcome is simply the chance that the stated outcome will occur. The result of 

considering these outcomes and their probabilities together is a probability distribution 

consisting of the specification of the possible outcomes that may occur and the probabilities 

associated with these possible outcomes.5 In our analysis it is assumed that the underlying 

probability distribution is a normal distribution which is the most widely used probability 

distribution in quantitative field. It plays important role in modern portfolio theory. The 

defining characteristics of a normal distribution are as follows:6 

 The normal distribution is completely described by two parameters: its mean 𝜇 and 

variance 𝜎ଶ. We can also define a normal distribution in terms of the mean and the 

standard deviation 𝜎. (This is often convenient because 𝜎 is measured in the same 

units as 𝜇.) As a consequence, we can answer any probability question about a normal 

random variable if we know its mean and variance. 

 The normal distribution has skewness of 0 (it is symmetric). The normal distribution 

has a kurtosis (measure of peakdness) of 3; its excess kurtosis (kurtosis -3.0) equals 0. 

As a consequence of symmetry, the mean, the median, and the mode are all equal for a 

normal random variable. 

 A linear combination of two or more normal random variables is also normally 

distributed. 

For a normal distribution, the probability that a particular outcome will be above or below a 

specified value can be determined. With one standard deviation on either side of the 

arithmetic mean of the distribution  68,3 % of the outcomes will be encompassed i.e. there is 

68,3 % probability that the actual outcome will be within one standard deviation of the 

arithmetic mean.7  Probabilities that the actual outcome will be within 2 or 3 standard 

deviations are 95% and 99 % respectively. Figure 1 represents these three cases. Possible 

outcomes or possible rates of the return are plotted on the horizontal axis. On the vertical axis, 

 
5Jones, C. (2019). Investments. [S.l.]: John Wiley. 
6DeFusco, R., McLeavey, D., Pinto, J. and Anson, M. (n.d.). Quantitative Investment Analysis. 
7Jones, C. (2019). Investments. New York: Wiley. 
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the probability of achieving any given rate of return is measured. The graph is shown as if the 

returns are continuous along the horizontal axis. Mean-variance analysis assumes that returns 

are normally distributed, meaning that outcomes above and below the expected value are 

equally likely.  

However, in the real world normal distributions are rare. Many distributions are characterized 

by skewness different from 0 where the greater the skewness the greater is the asymmetry.  

Negative skews or skewed to the left have a longer left tail and the distribution is concentrated 

on the right of the figure. Positive skews or skewed to the right have a longer right tail and the 

distribution is concentrated on the left of the figure. Return distribution that is positively 

skewed has frequent small losses and a few extreme gains. Return distribution that is 

negatively skewed has frequent small gains and a few extreme losses. Investors prefer 

positive skews because they dislike negative returns more than they like the same level of 

positive returns. 

Another case in which return distribution differs from normal distribution is when the greater 

percentage of returns is grouped closely around the mean (being more peaked) and when there 

is the greater percentage of returns with large deviations from the mean (having fatter tails). 

The kurtosis or the peakedness of a distribution curve represents whether the possibility of 

extreme events is greater than a normal distribution would suggest. The more peaked the 

curve (leptokurtic), the greater the possibility of extreme events and vice versa, the flatter the 

curve (platykurtic), the less likely extreme events are to occur. Distributions with a kurtosis 

greater than 3 are called fat tails.  Investors prefer lower kurtosis to higher kurtosis because 

they dislike the higher probability of losses that are associated in distributions with fat tails. 
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Figure 1: Three intervals of the normal distribution8 

 

Chapter 3 

 

Portfolio Environment 

 

3.1 Investment 

 

Investment can be described as the commitment of funds to one or more assets that will be 

held over some future time period. It refers to the management of an investor’s wealth. In this 

paper investment refers to financial assets which are intangible assets that represent a claim 

on future cash flows. Examples of financial assets are: equities, bonds, derivatives, funds. 

Each asset is characterized by following statistics presented in more details further in the 

paper: the expected return on asset, E(𝑟) or 𝜇, the variance of asset i’s return, (𝜎), the 

covariance of asset i’s and asset j’s returns (𝜎). 

 
8Amsi.org.au.(2020). Content-Normal_distribution.[online]Available_at: 
https://amsi.org.au/ESA_Senior_Years/SeniorTopic4/4f/4f_2content_3.html  
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Although individual asset returns and risks are important, total portfolio return and risk is 

what matters, because risk can be reduced by packaging different financial assets together to 

form a portfolio. Hence, in analyzing investment’s returns and risk, we should observe total 

portfolio held by investor. 

Suppose there is an investor who wants to invest certain amount of money in various financial 

assets with random returns. For each financial asset i, i=1,2……n, estimation of its expected 

return E(𝑟) and variance 𝜎
ଶ is calculated using historical returns data 

 

3.2  Return and Expected Return 

 

Investors wish to earn a return on their money. Return, from the aspect of portfolio theory, is 

a gain of a financial asset in a particular period. Individuals who buy riskier financial assets 

are trying to earn returns larger than those available from safer assets.  

For compound interest, return 𝑟௧ over some unit period t is equal to: 

𝑟௧ =
𝑃௧ − 𝑃௧ିଵ

𝑃௧ିଵ
 

(1) 

Where 𝑃௧ is the price of the asset at the end of the period t and 𝑃௧ିଵ is the price of the asset at 

the beginning of the period t. However, in our analysis we use continuously compounded 

return on the security which treats time as continues. Continuously compounded return 

associated with a holding period is the natural logarithm of the ending price over the 

beginning price: 

𝑟௧ = 𝑙𝑛 ൬
𝑃௧

𝑃௧ିଵ
൰ 

(2) 

As it is asserted, investors invest because they expect to achieve some gain. Howeverat the 

end of the investing period, they are left with actual or realized return. Investors’ realized 

return may turn out to be higher or lower than the expected return. The Markowitz model 

provides us with efficient portfolios assuming that we have perfect information on the 

expected return (𝜇,). Hence, it is important to make a good estimation of the expected 

return𝜇. We can estimate it by using time series of past returns. Under assumption that past 

returns somewhat reflect future returns, we assume that average of historical data represents 

expected return   of each security. 



 

Page 9 

Given a portfolio with n securities, the expected portfolio return over a specific time period is 

the weighted average of the expected returns on the individual assets in the portfolio:  

E(r୮) =  x୧E(r୧ ) = E(𝐫)𝐱 = 𝐱E(𝐫)

୬

୧ୀଵ

 

(3) 

Where 

x୧ = the portfolio weight for the𝑖th asset 

E(r୮) = the expected return on the 𝑖th asset 

 xi

𝐧

ୀଵ

= 1 

(4) 

x=

⎣
⎢
⎢
⎢
⎡
𝑥ଵ

𝑥ଶ

𝑥ଷ..
𝑥⎦

⎥
⎥
⎥
⎤

      is the vector of portfolio proportions 

 (5) 

 

𝐱 is transpose of this vector,𝐱=[𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, … , 𝑥 ] 

𝐄𝐫=

⎣
⎢
⎢
⎢
⎡
𝐸భ

𝐸మ

𝐸య..
𝐸⎦

⎥
⎥
⎥
⎤

     is the vector of means E(r) 

(6) 

 

E(r)istranspose of this vector, that is 𝐄(r) = [𝐸(𝑟1), 𝐸(𝑟2), 𝐸(𝑟2), … . 𝐸(𝑟𝑛)] 
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3.3  Risk 

 

Investors should be able to quantify risk. The risk associated with an investment is a chance 

that the actual outcome of an investment will differ from the expected return. Hence, we can 

say that risk arises out of variability or dispersion in the likely outcomes. For example, if 

asset’s return has no variability, it is assumed it has no risk. The most commonly used 

measure of dispersion is variance or standard deviation. The greater the standard deviation or 

the variance, the greater the dispersion is. The variance of returns is calculated by computing 

the deviation of each observed return from the average returns and then squaring each 

deviation. The sum of these squared deviations divided by the number of observations minus 

one is the sample variance. We are using sample variance because we are dealing only with 

the subset of outcomes for the random variable If we were dealing with the complete set of all 

outcomes for a given random variable, then we would consider the sum of the squared 

deviations would be divided by the number of observations, which is called population 

variance. The standard deviation is the square root of the variance. 

The formula for standard deviation is 

𝜎ଶ =
∑ (𝑥 − �̅�)ଶ

ଵ

𝑛 − 1
 

7here 

𝜎ଶ=the variance of a set of observations 

𝑥= the ith observationin the set 

�̅�=the mean of the observations 

n= the number of observations in the set 

𝜎= standard deviation 

 

It is at this point that the basis of modern portfolio theory emerges, which can be stated as 

follows: although the expected return of a portfolio is a weighted average of its expected 

returns, portfolio risk (as measured by the variance or standard deviation) is not a weighted 

average of the risk of the individual securities in the portfolio. 9Why is it so? Because 

investors can reduce the portfolio risk beyond what would be a weighted average of the 

individual assets’ risk.  

 
9JONES, C. (2019). INVESTMENTS. [S.l.]: JOHN WILEY. 
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Statistical concepts that measure the relationship between returns of one asset and another are 

covariance and correlation coefficient. Covariance is an absolute measure of the degree of 

association between the returns for a pair of assets.10 It measures the extent to which two or 

more random variables move together over time.  If the returns are positively related to one 

another, their covariance will be positive. And vice versa: if there is no relationship between 

them, the covariance should be zero. In calculating covariances it does not matter which 

variable comes first; σ = σ. The covariance of one variable with itself is the same as the 

variance of that variable: σ = σ
ଶ. What effect the covariance has on portfolio variance? For 

example, in case of two securities, if one asset tends to have high returns when the other tends 

to have low returns (relative to its expected return) then the returns on one security tend to 

offset the returns on the other, decreasing the variability of returns in the portfolio. 

Covariance is often represented in a covariance matrix. 

Given two random variables 𝑅and𝑅 , the covariance between them is equal to 

 

𝐶𝑜𝑣൫𝑅 , 𝑅൯ or 𝜎 = 𝐸 ቂ൫𝑅𝑖 − 𝐸(𝑅
𝑖
)൯ ቀ𝑅𝑗 − 𝐸(𝑅

𝑗
)ቁቃ 

(7) 

where 

𝜎 = the covariance between asset 𝑖 and asset 𝑗 

𝑅 = possible return on asset 𝑖 

𝐸𝑅 = the expected value of the return on security 𝑖 

 

Equation 8 states that covariance between two random variables is the probability-weighted 

average of the cross-products of each random variables deviation from its own expected 

value.11 

Although covariance is critical input in defining the variance of a portfolio it does not entirely 

describe the relationship between the two assets. It is unbounded and its range extends from 

minus to plus infinity. However, we can standardize covariance by dividing it by the product 

of the standard deviations for the two assets and thus get a better descriptor called correlation 

coefficient. Correlation coefficient is a relative measure of co-movements between asset 

 
10JONES, C. (2019). INVESTMENTS. [S.l.]: JOHN WILEY. 
11JONES, C. (2019). INVESTMENTS. [S.l.]: JOHN WILEY. 
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returns. Its values fall into interval from -1 to 1. Expression for correlation coefficient 

between two variables is as follows: 

ρ =
σ௫௬

σ௫ σ௬ 

 

(8) 

Where 

σ௫௬ = covariance between securitise x and y 

σ௫ = standard deviation of x 

σ௬ = standard deviation of y 

 

When ρ


is equal to +1,0 securities are perfectly positively correlated and there is no 

reduction in portfolio risk. Two securities move perfectly in the same direction. When ρ


=

0 portfolio risk is reduced. When ρ


 is − 1.0, portfolio risk could beeliminated by 

combining these two perfectly negatively correlated securities.. In the real world extreme 

correlations are rare and securities typically have positive correlation to each other. Investors 

prefer to find securities with the least positive correlation possible, preferably with negative 

correlation. But in general, they will be faced with positively correlated security returns.12 In 

his portfolio theory Markowitz recognized the importance of the variances and covariances. 

Up to this point we have seen that portfolio risk is determined by three factors: the variance of 

each security, the covariances between securities and the portfolio weights for each security. 

Hence formula for portfolio variance is 

𝛔𝐩
𝟐 = ∑ ∑ 𝐱𝒊𝐱𝒋𝛔𝒊𝒋    =  ∑ 𝐱𝐢

𝟐𝛔𝐢
𝟐𝒏

𝒊ୀ𝟏 + 𝟐 ∑ ∑ 𝐱𝒊
𝒏
𝐣ୀ𝟏 𝐱𝒋𝛔𝐢𝐣

𝒏
𝒊ୀ𝟏

𝒏
𝐣ୀ𝟏

𝒏
𝐢ୀ𝟏   (9) 

 

where 

𝜎
ଶis thevariance of the return on the portfolio 

𝜎
ଶis the variance of return for security i 

𝜎 is the covariance between the returns for securities i and j 

xare the portfolio weights. 

 

 
12JONES, C. (2019). INVESTMENTS. [S.l.]: JOHN WILEY 
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As the number of securities in the portfolio increases, the importance of individual securities 

variances decreases, while the importance of the covariance increases.13 

Consider the first term of the equation 9 and assume that an investor invested equal amounts 

in each security. The weights will be 1/n. Substituting it in equation (9) we get: 

∑ [(1/n)ଶ]𝜎
ଶ

ୀଵ =
ଵ


∑ 𝜎ଶ/𝑛

ୀଵ     (10) 

The term in brackets represents an average variance for the assets in the portfolio. As n 

becomes larger, average variance gets smaller, approaching zero for large values. Hence, the 

risk of well-diversified portfolio will greatly depend on the second term of equation 

representing the covariance relationship. 

 

Let Σ denote the n n symmetric covariance matrix with 𝜎 = 𝜎
ଶ and 𝜎 = 𝜌𝜎𝜎  for i≠ 𝑗. 

Then the variance of portfolios return in a matrix form can be written as 

σ୮
ଶ = ∑ ∑ 𝑥


ୀଵ 𝑥𝜎


ୀଵ =  𝒙்Σ 𝐱     (11) 

 

3.4  Mean-Variance Analysis 

 

Mean-variance portfolio theory, the oldest and perhaps the most accepted part of modern 

portfolio theory, provides the theoretical foundation for examining the roles of risk and return 

in portfolio selection. Mean-variance optimization (MVO) is based on the following 

assumptions:14 

 All investors are risk-averse, meaning they prefer less risk to more for the same 

amount of expected return. 

 Expected returns for all assets are known. 

 The variances and covariances of all asset returns are known. 

 There are no transaction costs or taxes. 

Investors do not have the same tolerance for risk, but risk-averse investors prefer as little risk 

as possible for a given level of expected return. In the real world, expected returns and 

variances of returns are not known but estimated, which presents a drawback of mean-

variance analysis but we will assume that estimated returns reflect future returns. Investor’s 

objective in the mean-variance analysis of portfolio selection is to find an efficient portfolio. 

 
13JONES, C. (2019). INVESTMENTS. [S.l.]: JOHN WILEY. 
14DeFusco, R., McLeavey, D., Pinto, J. and Anson, M. (n.d.). Quantitative Investment Analysis. 
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Markowitz was the first to derive the concept of efficient portfolio, which is one that offers 

the highest expected return for a given level of risk. Hence, when an investor quantifies his 

tolerance for risk using standard deviation, he wants the portfolio that will yield the greatest 

possible return for his quantified tolerance for risk. To start identifying efficient portfolios, we 

must explain the following concepts, plotted in the figure 2. Assets in the figure 2 yield the 

feasible set of portfolios. The feasible set is the set of all portfolios that can be formed from a 

group of n assets. Feasible set is the area inside and to the right of the curved line. An feasible 

portfolio is called an envelope portfolio if for a given level of expected return it has minimum 

variance. Minimum-variance set or envelope (different names are used in various literatures) 

is the set of all envelope portfolios. Envelope is the border of the feasible region and it is 

represented by the curved line plotted in two-dimensional graph representing portfolios that 

have minimum variance for each given level of expected return. If we move to the right from 

a point which represents a portfolio on the envelope, we reach other portfolios.  They have 

greater risk for the same level of expected return. An envelope portfolio minimizes variance 

for a given targeted return. Finally, efficient portfolio is the one that has the highest expected 

return among all portfolios with the same variance. The set of all efficient portfolios is called 

the efficient frontier. 

An efficient portfolio maximizes expected return for a given level of risk and is represented as 

bold curve, which is the upper part of the envelope set in the figure 2. It is important to 

emphasize that it is impossible to find portfolios that are located above the efficient frontier 

 

 
Figure 2:Efficient Frontier 
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Markowitz’s portfolio optimization model can be formulated in three different but equivalent 

ways15. In this paper we will solve the problem of finding a minimum variance portfolio given 

the target value of expected return. It can be stated as the following quadratic optimization 

problem with linear constraints: 

𝑚𝑖𝑛 𝐱TΣ 𝐱         (12) 

s.t.                                        

𝐱𝟏 = 1         (13) 

𝐱E(𝐫)  ≥ �̅�        (14) 

𝐱 ≥ 0         (15) 

 

 

The objective function (12) is the variance of the portfolio that we want to minimize, σ୮
ଶ =

𝐱Σ 𝐱. The first constraint (13) denotes that we are considering only feasible portfolios, 

meaning that the available capital is fully invested and the sum of weights is equal to 1. The 

second constraint (14) denotes that the expected return should be no less than the target 

value�̅�. Third constraint (15) forbids short selling, that is all weights should be non-negative. 

Short selling is the ability to sell an asset that is not owned by the investor, i.e. borrowing it 

from someone else and then selling it, with the obligation of buying back the asset and 

returning it to the original owner. In the case when short selling is allowed, Markowitz’s 

portfolio model has unique solution and can be solved analytically. However, if the weights 

are non-negative, which forbids short selling, then the optimization has to be done 

numerically.16In this analysis, two cases of MVO problem will be solved. In the first case, we 

solve the model which allows short sales, that is model (12-14). This model will be solved by 

using the Lagrangian multiplier method and results will be implemented in R. The second 

model considers the case when short sales are not allowed, that is model (12-15).  The model 

will be solved using a quadratic solver in R, thus obtaining weights of the portfolios. The R 

package quadprog provides the function solve.QP() for solving quadratic programming 

problems in which variance is minimized subject to some set of linear constraints. 

 
15Cornuejols, G. and Tütüncü, R. (2007). Optimization methods in finance. Cambridge: Cambridge University 
Press. 
16Würtz, D., Setz T.,Chalabi, Y.,  (2011). Portfolio Optimization with R/Rmetrics . 
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Chapter 4 

 

Mean-CVaR Portfolio Theory and Settings 

 

Mean-Variance analysis assumes that asset returns follow normal distribution. However, these 

assumptions do not mirror the real world. Many assets can have skewed and leptokurtic return 

distributions. Moreover, Markowitz approach is not suited to capture events of low 

probability such as default risk.  Because of these shortcomings of the variance measure, 

many researchers aimed to develop models that take into account asymmetries in the asset 

returns. In 1994 the concept of Value at Risk (VaR) was introduced as an alternative to the 

volatility as traditional measure of the risk. VaR has become very popular method in financial 

practice for measuring risk since investors are concerned about the maximal loss of a portfolio 

over specific time interval at a defined confidence level. 

VaR is the largest likely loss from market risk (expressed in currency units) that an asset or 

portfolio will suffer over time interval with a degree of certainty selected by the user 17 

However, VaR exhibits many theoretical and practical shortcomings.One of them is that VaR 

ignores the severity of losses beyond the cutoff. There is no information about the extent of 

the tail distributions, which means that portfolio return can yield lower values than VaR, 

resulting in severe losses. More importantly, VaR is not a coherent risk measure in the sense 

defined by Arztner, et al. ( 1999) 18 Coherent risk measure satisfies four axioms and Var does 

not fulfill subadditivity axiom and hence ignores the concept of diversification. Therefore, 

portfolio’s VaR can be larger than the sum of the VaRs of itscomponents. Moreover, when 

asset returns are expressed in terms of discrete distributions, VaR is non-convex and 

discontinuousfunction of the portfolio positions and exhibits multiple local extremes19 

Therefore, it makes optimization process very complex, difficult and impractical to use. In 

this regard, suitable risk measures have been investigated. Arztner et. Al (1997) introduced 

certain criteria and properties an ideal risk measure needs to satisfy in order to be coherent.  

These are as follows. LetX be a set of outcomes and let p(X) be a measure of risk.  
 

17 Choudhry, M., 2013. An Introduction To Value-At-Risk. New York: Wiley. 
18 Dempster, M., Mitra, G. and Pflug, G., 2009. Quantitative Fund Management. Boca Raton: CRC Press. 
19Uryasev, S., 2020. [online] Ise.ufl.edu. Available at: 
<https://www.ise.ufl.edu/uryasev/files/2011/11/VaR_vs_CVaR_CARISMA_conference_2010.pdf> [Accessed 7 
July 2020]. 
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 Axiom 1: Subadditivity 

By adding two portfolios together, the total risk cannot worsen than adding the two risk 

separately, meaning that diversification have a reduction in risk. 

p(X+Y)<p(X) + p(Y) 

 

 Axiom 2: Monotonicity 

If X<Y, then p(X)>p(Y) 

If one portfolio has better values than another then its risk will be better. 

 

 Axiom 3: Homogeneity 

For all X>0,p(XX)=Xp(X) 

Increasing your portfolio should double your risk by the same factor 

 

 Axiom 4: Translation invariance 

p(X+c)=p(X)-c 

By adding cash to your portfolio this should simply reduce its risk by constant c.  

 

If a risk measure does not satisfy one of the four axioms, it can lead to incorrect results and 

wrong estimation of risk. In order to enhance the VaR to meet subadditivity as well as the 

other three properties and be a coherent risk measure, Rockafellar and Uryasev (2002) 

introduced Expected Shortfall (ES) orConditional Value at Risk.The CVaR risk has been 

proved by Pflug (2000) and Rockafellerto be a coherent risk. Uryasev has shown that CVaR is 

a continues and convex function of the portfolio components. 

CVaR is more sensitive than VaR to the tail behavior of loss distribution because it quantifies 

the mass in the tail of the distribution exceeding VaR. Simply put, it is a conditional 

expectation of the loss above the VaR for a given time interval and confidence level. 

Although CVaRhas not become norm in finance industry, CVaR is gaining importance in the 

insurance industry.20 According to the Rockafeller and Uryasev, minimization of CVaR also 

yields similar optimal solutions in VaR terms because CVaR measure will always be grater or 

equal to the VaR measure for a given portfolio. Hence, portfolio with low CVaR will also 

have low VaR as well. Furthermore, in case of normal distribution, these two measures are the 

 
20Krokhmal, P., Uryasev, t. and Palmquist, J., 2001. Portfolio optimization with conditional value-at-risk 
objective and constraints. The Journal of Risk, 4(2), pp.43-68. 
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same yielding the identical optimal portfolio. However, problem arises for much skewed 

distributions where CVaR and VaR can be entirely different. Besides easiness of use 

optimization methods and the differences in mathematical properties, the reasons behind the 

choice between CVaR and VaR are also grounded onacceptance by regulators, reliability of 

statistical estimation etc. 

The reasons why CVaR could be considered more consistent measure than VaR can be 

summerizedas follows: 

 

 It has better mathematical properties than VaR due its coherence. CVaR is a 

continuous and convex function of its portfolio components, whereas VAR could 

exhibit discontinuity. 

 

 CVaR can be solved using linear programming algorithms which allows the 

optimization of very large problems, whereas VaR is difficult to optimize due to its 

non-convexity and complexity. 

 

 VaR risk measure ignores the scenarios beyond the VaR, whereas CvaR accounts for 

it, that is it is more conservative (which can be both good and bad, depending on one’s 

goals). 

 

 

4.1 Mathematical Formulation of CVaR Optimization Problem 

 

 

For a specified confidence level 𝛼, CVaR is defined as follows21: 

 

Let f(w,r) be the loss function of a portfolio w from the set X of feasible portfolios and let r be 

a realization of random events. Furthermore, let p(r) be a probability density functionof the 

random variabler and let𝜓 be the cumulative distribution function for the loss related to fixed 

portfoliow.Function 𝜓(𝐰, 𝛾) is a continuous function which is also non-decreasing with 

respect to 𝛾, where 𝛾 is the threshold value loss. The function 𝜓(𝐰, 𝛾) can be interpreted as 

the probability that the losses do not exceed threshold 𝛾 and it is defined as: 

 
21Würtz, D., Setz T.,Chalabi, Y.,  (2011). Portfolio Optimization with R/Rmetrics 
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𝜓(𝐰, 𝛾) = න 𝑝(𝑟)𝑑𝑟
(𝐰,)ஸఊ

 

  
For a given confidence level 𝛼 , the 𝑉𝑎𝑟ఈ associated with portfolio w is defined as 

 

𝑉𝑎𝑅ఈ(𝐰) = 𝑚𝑖𝑛{𝛾𝜖ℝ: 𝜓(𝐰, 𝛾} ≥ 𝛼 

 

Now, the 𝐶𝑉𝑎𝑟ఈ is defined as 

 

𝐶𝑉𝑎𝑅ఈ(𝐰) =
1

1 − 𝛼
න 𝑓(𝐰, 𝑟)𝑝(𝑟)𝑑𝑟

(𝐰,)ஸோഀ(௪)

 

 

The problem of determining mean-CVaR portfolio can be stated as follows: 

 

𝑚𝑖𝑛 𝐶𝑉𝑎𝑅ఈ(𝐰) 

s.t. 

𝐰்𝛍 = 𝑟 

𝒘்𝟏 = 1 

 

where 𝛍 is the vector that estimates the expected mean of the assets and r is target return. 

Minimizing 𝑉𝑎𝑟ఈ and 𝐶𝑉𝑎𝑅ఈ is not the same and because the definition of 𝐶𝑉𝑎𝑅ఈ includes 

the 𝑉𝑎𝑟ఈ it is difficult to optimize this function. Instead, the following auxiliary function is 

considered: 

 

𝐹ఈ(𝐰, 𝛾) = 𝛾 +
1

1 − 𝛼
න (𝑓(𝐰, 𝑟) − 𝛾)𝑝(𝑟)𝑑𝑟

(𝐰,)ஹఊ

 

 

Alternatively, it can be written as 

 

𝐹ఈ(𝐰, 𝛾) = 𝛾 +
1

1 − 𝛼
න(𝑓(𝐰, 𝑟) − 𝛾)ା𝑝(𝑟)𝑑𝑟 

 

Where 𝑧ା = max(𝑧, 0). 
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This final function of 𝛾 has the following properties useful for the computation of 𝑉𝑎𝑟ఈ and 

𝐶𝑉𝑎𝑅ఈ: 

 𝐹ఈ(𝐰, 𝛾) is a convex function of 𝛾 

 𝑉𝑎𝑅ఈ(𝐰) is minimizer of 𝐹ఈ(𝐰, 𝛾) 

 The minimum value of the function 𝐹ఈ(𝐰, 𝛾) is 𝐶𝑉𝑎𝑅ఈ(𝐰) 

𝐶𝑉𝑎𝑅ఈ can be optimized via optimization of function𝐹ఈ(𝐰, 𝛾) with respect to the weights w 

and 𝛾 equal to VaR. If the loss function f(w,r)  is a convex function of the portfolio variables 

w, then 𝐹ఈ(𝐰, 𝛾) is also a convex function of w. Hence, feasible portfolio set W is also 

convex. Due to these properties, optimization problems are smooth convex optimization 

problems than can be easily solved with well-known optimization techniques. 

 

 

Chapter 5 

 

R 

 

5.1 About R 

 

R is a program for statistical computing and graphics. It is a GNU project which is similar to 

the S language and environment which was developed at Bell Laboratories (formerly AT&T, 

now Lucent Technologies) by John Chambers and colleagues. R can be considered as a 

different implementation of S. There are some important differences, but much code written 

for S runs unaltered under R. R is an open source program, meaningthat it can be upgraded 

and changed with new versions or by users themselves. “R provides a wide variety of 

statistical (linear and nonlinear modeling, classical statistical tests, time-series analysis, 

classification, clustering, …) and graphical techniques, and is highly extensible.“22. R-studio 

is integrated development environment that simplifies usage of R. Its interface is organized so 

that the user can clearly view graphs, data tables, R code and output all at the same time. It 

also offers an Import-Wizard-like feature that allows users to import CSV, Excel, SAS 

(*.sas7bdat), SPSS (*.sav), and Stata (*.dta) files into R without having to write the code to 
 

22available at: https://www.r-project.org/about.html, accesed: 27.12.2019. 
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do so. “23.R-studio includes a console, syntax-highlighting editor that supports direct code 

execution, as well as tools for plotting, history, debugging and workspace 

management.24When user launches RStudio, she/he sees the following four windows or 

panes.1) Source2) Console 3) Environment/History 4) Files/Plots/Packages/Help25 . Figure 2 

shows windows in RStudio. 

 

 

 
Figure 3: Windows in Rstudio 

Source: https://datascienceplus.com/introduction-to-rstudio/accesed: 27.12.2019 

 

R is very useful for portfolio management because it offers many useful financial packages. R 

packages are a collection of R functions, complied code and sample data. They are stored 

under a directory called "library" in the R environment. By default, R installs a set of 

packages during installation. More packages are added later, when they are needed for some 

specific purpose. When we start the R console, only the default packages are available by 

default“26. 

 

 
23available at: https://www.r-project.org/about.html, accesed: 27.12.2019. 
24  Available at: https://datascienceplus.com/introduction-to-rstudio/, accesed: 27.12.2019 
25Available at: https://datascienceplus.com/introduction-to-rstudio/, accesed: 27.12.2019 
26available at: https://www.tutorialspoint.com/r/r_packages.htm, accesed:29.12.2019 
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5.2 Portfolio Functions in R 

Portfolio construction and optimization with the RmetricsfPortfolio package relies on 

four pillars27:  

  Definition of the portfolio input, writing specifications, loading the data of the assets, 

and setting up the constraints.  

 Optimization of the portfolio, including the computation of single portfolios such as 

feasible, efficient, tangency (max reward/risk) or minimum variance (global minimum 

risk) portfolios, and the evaluation of the entire efficient frontier.  

 Generation of portfolio reports: printing, plotting and summarizing the results.  

 Analysis of portfolio performance, including rolling analysis, backtesting and 

benchmarking. 

R packages that are used for portfolio and financial analysis in this paper are: fPortfolio, 

PerformanceAnalytics,quantmod,ggplot2,plotrix,timeSeries.  

In order to implement portfolio optimization,we need to specify the model we want to use, 

then choose the corresponding portfolio settings and finally the type of programming solver 

that should be applied in optimization (linear, quadratic or nonlinear). All parameter settings 

that specify portfolio are described by a classfPFOLIOSPEC. This portfolio specification 

class consists of following slots: the model, the portfolio, the optim and the 

message slot. The first slot modelcarries the information about the type of the portfolio 

(MV-mean variance (Markowitz) portfolio, CVAR-mean conditional Value at Risk portfolio 

etc.), the objective function needed to be optimized and the estimator for mean and 

covariance. The second slot portfolio holds all parameters needed to be specified like the 

weights, the target return and risk, the number of frontier points. The third slot optim 

includes the information about the solver that should be used (solveRquadprog, soleRglpk..). 

The last slot message has a list of optional messages. 

Default setting of the function portfolioSpec()is the mean-variance Markowitz 

portfolio specification with long-only constraints. The solver used for optimization is a 

quadratic programming solver (QP); solveRquadprog. 

Printed output represents list of the arguments for the default settings of portfolioSpec()that 

contains the same arguments as the specification for  mean-variance model. 

 

 
27Portolio Optimization with R/Rmetrics (D.Wűrtz,T. Setz, Y. Chalabi, W. Chen, A. Ellis) 
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>formals(portfolioSpec) 
$model 
list(type = "MV", optimize = "minRisk", estimator = "covEstimator",  
tailRisk = list(), params = list(alpha = 0.05)) 
 
$portfolio 
list(weights = NULL, targetReturn = NULL, targetRisk = NULL,  
riskFreeRate = 0, nFrontierPoints = 50, status = NA) 
 
$optim 
list(solver = "solveRquadprog", objective = c("portfolioObjective",  
    "portfolioReturn", "portfolioRisk"), options = list(meq = 2),  
control = list(), trace = FALSE) 
 
$messages 
list(messages = FALSE, note = "") 
 
$ampl 
list(ampl = FALSE, project = "ampl", solver = "ipopt",  
protocol = FALSE, trace = FALSE) 
 

 

> print(MV) 
 
Model List:  
Type:                      MV 
Optimize:                  minRisk 
Estimator:                 covEstimator 
Params:                    alpha = 0.05 
 
Portfolio List:  
 Target Weights:            NULL 
 Target Return:             NULL 
 Target Risk:               NULL 
Risk-Free Rate:            0 
NumberofFrontierPoints: 50 
 
Optim List:  
Solver:                    solveRquadprog 
Objective:                 portfolioObjectiveportfolioReturnportfolioRisk 
Options:                   meq = 2 
Trace:                     FALSE 
 

 

 

Chapter 6 

 

Portfolio Optimization with Rmetrics 

 

6.1. Introducing Portfolio Components 

 

In this section we compute a minimum-variance set off our stocks with large trading volume 

from NASDAQ index. We consider the following stocks: Alphabet.inc (GOOGL), Tesla.inc 

(TSLA), Facebook.inc (FB) and Amazon.com.inc (AMZN) Selection of these stocks is based 

on the growing industries such as artificial intelligence/internet retail, electric cars, and 

Internet Content & Information. Figure 4 shows candlestick charts that describe price 
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movements of selected stocks in the period from October 2019 to December 2019 (time 

period of 10 weeks). Candlesticks are composed of the body (green or orange) that illustrates 

the opening and closing trades and an upper and a lower shadow (wick) that represents the 

highest and lowest traded prices of a stock during the time interval represented. Advantage of 

using this chart type with color customized candles over the other chart types is that it can be 

easily understood. A green candle is a bullish candle and an orange candle is a bearish candle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Candlestick charts of portfolio stocks 

Source: Authors calculation (R-studio) 

 

The data used in this section are secondary data in the form of time series data of weekly 

stock prices in the period from December 2018 to December 2019 (52 weeks). First we 

upload data using a package quantmod and its function getSymbolsthat downloads 

financial data straight into R from Yahoo website. Secondly, the continuously compounded 

returns are calculated using ROC function which calculates the rate of change of a series over 

n periods. Finally, the data were converted into timeSeriesobjects using function 

as.timeSeries. 

 
>tickers<- c("FB", "AMZN",  "GOOGL", "TSLA") 
>portfolioPrices<- NULL 
> for(tickerintickers) { 
+   portfolioPrices<- cbind(portfolioPrices, 
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+                            getSymbols.yahoo(ticker, from='2018-12-12',to='2019-12-12', 
periodicity = 'weekly', auto.assign=FALSE)[,4]) 
+ } 
>portfolioReturns<- na.omit(ROC(portfolioPrices)) 
>portfolioReturns<- as.timeSeries(portfolioReturns) 
 
>portfolioReturns 
 
 
GMT 
FB.CloseAMZN.CloseGOOGL.CloseTSLA.Close 
2018-12-17 -0.142316232 -0.144700646 -0.059205880 -0.1342386920 
2018-12-24  0.063938102  0.070469440  0.054411808  0.0431497277 
2018-12-31  0.035039543  0.063799502  0.029549054 -0.0496756098 
2019-01-07  0.041532187  0.040534813 -0.012695360  0.0889977369 
2019-01-14  0.042478412  0.033352743  0.039447669 -0.1387862005 
2019-01-21 -0.006888494 -0.015225573 -0.005242689 -0.0174207671 
2019-01-28  0.106225931 -0.026900413  0.015413803  0.0498091693 
2019-02-04  0.009728608 -0.023650566 -0.014624295 -0.0207447552 
2019-02-11 -0.029289921  0.012346171  0.015526795  0.0067788587 
2019-02-18 -0.003760916  0.014576603 -0.002745695 -0.0437183215 
2019-02-25  0.002406146  0.024322358  0.028221591  0.0002714775 
2019-03-04  0.044119527 -0.030939122  0.001261655 -0.0367961417 
2019-03-11 -0.021575484  0.054952642  0.034469587 -0.0311336398 
2019-03-18 -0.009929847  0.030147854  0.014470925 -0.0403788248 
2019-03-25  0.014198384  0.009014242 -0.025800964  0.0563347619 
2019-04-01  0.052756013  0.031251609  0.028942570 -0.0176638247 
2019-04-08  0.019052518  0.003141033  0.009268099 -0.0267586045 
2019-04-15 -0.004589000  0.010057380  0.015210091  0.0205567642 
2019-04-22  0.071480272  0.046667754  0.028546315 -0.1502426823 
2019-04-29  0.020571306  0.006046369 -0.071267328  0.0812001042 
2019-05-06 -0.037158101 -0.037632532 -0.018590495 -0.0627442440 
2019-05-13 -0.016272669 -0.011162708  0.000975864 -0.1266366386 
2019-05-20 -0.023147692 -0.024766436 -0.026152288 -0.1016658960 
2019-05-27 -0.020026871 -0.026797264 -0.028606327 -0.0291140650 
2019-06-03 -0.023488879  0.016183239 -0.035067763  0.0993476377 
2019-06-10  0.045005880  0.035738901  0.016643354  0.0496978811 
2019-06-17  0.052687552  0.022021696  0.035334394  0.0317807003 
2019-06-24  0.009684050 -0.009288040 -0.038561542  0.0071859016 
2019-07-01  0.017463176  0.025691242  0.045027392  0.0422351133 
2019-07-08  0.042222242  0.034445244  0.011123790  0.0501171242 
2019-07-15 -0.032292041 -0.023384160 -0.012113089  0.0520722929 
2019-07-22  0.006983018 -0.010989022  0.095723780 -0.1241359675 
2019-07-29 -0.055213734 -0.063643796 -0.040062065  0.0272520137 
2019-08-05 -0.006209047 -0.008626223 -0.006221603  0.0028550100 
2019-08-12 -0.022339828 -0.008338596 -0.008183840 -0.0662732542 
2019-08-19 -0.032925907 -0.024251696 -0.021974577 -0.0396027459 
2019-08-26  0.043592825  0.015128323  0.031528498  0.0650558043 
2019-09-02  0.009754644  0.031705227  0.013175748  0.0081225715 
2019-09-09 -0.001601383  0.003174625  0.027561238  0.0751437710 
2019-09-16  0.014531392 -0.024869828 -0.008251544 -0.0188552870 
2019-09-23 -0.069940968 -0.039049107 -0.003168038  0.0062558878 
2019-09-30  0.018739136  0.008196100 -0.012302612 -0.0451973709 
2019-10-07  0.020514130 -0.004453312  0.003914835  0.0687076736 
2019-10-14  0.008972085  0.014667395  0.023333313  0.0358964648 
2019-10-21  0.010916751  0.002171140  0.015857099  0.2445283264 
2019-10-28  0.030040770  0.016950552  0.006268338 -0.0462167772 
2019-11-04 -0.014462090 -0.003108439  0.028476500  0.0733052095 
2019-11-11  0.022076919 -0.026319333  0.018573603  0.0436157316 
2019-11-18  0.018887650  0.003575100 -0.030353915 -0.0558514206 
2019-11-25  0.014083996  0.031063976  0.008022279 -0.0093518041 
2019-12-02 -0.002930276 -0.027701396  0.026708844  0.0178729443 
2019-12-09  0.006000325 -0.001645567  0.003621939  0.0488341012 
 

 

Internal data structure of the portfolio looks as follows. 

 
>portfolioData<-portfolioData(data=portfolioReturns, spec=portfolioSpec()) 
> print(portfolioData) 
 
Head/TailSeries Data: 
 
GMT  
FB.CloseAMZN.CloseGOOGL.CloseTSLA.Close 
2018-12-17 -0.14231623 -0.14470065 -0.05920588 -0.13423869 
2018-12-24  0.06393810  0.07046944  0.05441181  0.04314973 
2018-12-31  0.03503954  0.06379950  0.02954905 -0.04967561 
GMT  
FB.CloseAMZN.CloseGOOGL.CloseTSLA.Close 
2019-11-25  0.014083996  0.031063976 0.008022279 -0.009351804 
2019-12-02 -0.002930276 -0.027701396 0.026708844  0.017872944 
2019-12-09  0.006000325 -0.001645567 0.003621939  0.048834101 
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Statistics: 
 
$mean 
FB.CloseAMZN.CloseGOOGL.CloseTSLA.Close 
 0.0065254636  0.0018067212  0.0047195935 -0.0006965918  
 
$Cov 
FB.CloseAMZN.CloseGOOGL.CloseTSLA.Close 
FB.Close    0.0015049227 0.0008843987  5.196284e-04  5.240888e-04 
AMZN.Close  0.0008843987 0.0012159249  5.348228e-04  4.243135e-04 
GOOGL.Close 0.0005196284 0.0005348228  8.658192e-04 -4.177369e-05 
TSLA.Close  0.0005240888 0.0004243135 -4.177369e-05  5.090559e-03 
 
$estimator 
[1] "covEstimator" 
 
$mu 
FB.CloseAMZN.CloseGOOGL.CloseTSLA.Close 
 0.0065254636  0.0018067212  0.0047195935 -0.0006965918  
 
$Sigma 
FB.CloseAMZN.CloseGOOGL.CloseTSLA.Close 
FB.Close    0.0015049227 0.0008843987  5.196284e-04  5.240888e-04 
AMZN.Close  0.0008843987 0.0012159249  5.348228e-04  4.243135e-04 
GOOGL.Close 0.0005196284 0.0005348228  8.658192e-04 -4.177369e-05 
TSLA.Close  0.0005240888 0.0004243135 -4.177369e-05  5.090559e-03 

 

After we have computed returns of stocks in consideration, we have plotted the histograms of 

return distributions for each individual stock. It represents good visualization about 

symmetry/asymmetry of corresponding return distribution. 

 
Figure 5:Histogram of asset returns 

Source: Authors calculation (R-studio) 

 

Histogram can be created using thehist()function in R programming language.The density 

function, represented by the histogram of returns, describes the relative likelihood for this 

random variable to take on a given value. It also acts as a tool to identify the skewness. 
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 Skewness is used as an additional risk measure when the data shows asymmetrical 

distribution, which is the case with selected stocks in this analysis. Skewness can either be 

negative or positive. Positive skewness shows a return distribution where frequent small 

losses and a few extreme gains are common while negative skewness shows frequent small 

gains and a few extreme losses. If a stock’s return follows a normal distribution pattern, then 

skewness will be 0. Figure 5 shows that the majority of returns of Tesla and Alphabet.inc are 

positive because they have longer or fatter tail on the right side of the distribution while the 

majority of the returns of Facebook and Amazon are negative because they have longer or 

fatter tail on the left side.The shape of the tails of the distribution is measured by the kurtosis 

of the distribution. Assuming rationality, investors should prefer low excess kurtosis because 

that indicates more predictable returns. Kurtosis greater than 3 indicates departure from 

normal distribution in most return series, or the fat-tails problem what is evident at Amazon 

followed by Facebook. 

 

Code for the figure 3 in R is as follows 

 

>hist(portfolioReturns$FB.Close, probability = T,breaks = 7,col = "blue",main = "FACEBOOK", 
xlab = "Log returns",ylim = c(0,13)) 
>lines(density(portfolioReturns$FB.Close),col=2, lwd=3) 
>hist(portfolioReturns$AMZN.Close, probability = T,breaks = 7,col = "blue",main = "AMAZON", 
xlab = "Log returns",ylim = c(0,12)) 
>lines(density(portfolioReturns$AMZN.Close),col=2,lwd=3) 
>hist(portfolioReturns$GOOGL.Close, probability = T,breaks = 7,col = "blue",main = 
"ALPHABET(GOOGLE)", xlab = "Log returns",ylim = c(0,15)) 
>lines(density(portfolioReturns$GOOGL.Close),col=2,lwd=3) 
>hist(portfolioReturns$TSLA.Close, probability = T,breaks = 7,col = "blue",main = "TESLA", 
xlab = "Log returns",ylim = c(0,8)) 
>lines(density(portfolioReturns$TSLA.Close),col=2,lwd=3) 
 

 

6.2 Mean-Variance in R 

 

Computing portfolio components 

 

The mean for each stock is calculatedin R by applying function colMeans()on already 

calculated returns and will provide expected returns for chosen stocks. 

 
>portfolioReturns 

 

>mu.vec<-colMeans(portfolioReturns) 
>names(mu.vec)<- asset.names 
>asset.names<- c("FB", "AMZN", "GOOGL","TSLA") 
 
>mu.vec 
           FB          AMZN         GOOGL          TSLA  
 0.0065254636  0.0018067212  0.0047195935 -0.0006965918  
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Covariances are often presented in the covariance matrix. From continuously compounded 

returns covariance matrix and correlation matrix are calculated. 

There are several different ways to formulate covariance matrix in R. It can be done simply by 

using functions cov() and cor(). 

 
>cov(portfolioReturns) 
>cor(portfolioReturns) 
 
>cov(portfolioReturns) 
                FB         AMZN         GOOGL          TSLA 
FB    0.0015049227 0.0008843987  5.196284e-04  5.240888e-04 
AMZN  0.0008843987 0.0012159249  5.348228e-04  4.243135e-04 
GOOGL 0.0005196284 0.0005348228  8.658192e-04 -4.177369e-05 
TSLA  0.0005240888 0.0004243135 -4.177369e-05  5.090559e-03 
>cor(portfolioReturns) 
             FB      AMZN       GOOGL        TSLA 
FB    1.0000000 0.6537891  0.45522085  0.18934988 
AMZN  0.6537891 1.0000000  0.52124622  0.17054963 
GOOGL 0.4552208 0.5212462  1.00000000 -0.01989787 
TSLA  0.1893499 0.1705496 -0.01989787  1.00000000 
 
 

It is also possible to obtain it in the following way.First, matrix M is constructed out of 4 

vectors: 

> FB <- c((portfolioReturns)[,1]) 
> AMZN <- c((portfolioReturns)[,2]) 
> GOOGL <- c((portfolioReturns)[,3]) 
> TSLA <- c((portfolioReturns)[,4]) 
> M <- cbind(FB,AMZN,GOOGL,TSLA) 
 

Then a matrix of means (M_mean) is created: 

> k <- ncol(M) #numberofvariables 
> n <- nrow(M) #numberofsubjects 
M_mean<- matrix(data=1, nrow=n) %*% cbind(mean(FB),mean(AMZN),mean(GOOGL),mean(TSLA)) 
 

After that, an excess matrix (E) is created by subtracting the matrix of means (M_mean) from 

the data matrix (M): 

> E <- M - M_mean 
 

Finally we get the covariance matrix sigma.mat by multiplying the transpose of the excess 

matrix (E) with the excess matrix E and the inverse of the number of time periods minus 1. 

> C <- (n-1)^-1* t(E) %*% E 
>sigma.mat<-C 
>sigma.mat 
 
                FB         AMZN         GOOGL          TSLA 
FB    0.0015049227 0.0008843987  5.196284e-04  5.240888e-04 
AMZN  0.0008843987 0.0012159249  5.348228e-04  4.243135e-04 
GOOGL 0.0005196284 0.0005348228  8.658192e-04-4.177369e-05 
TSLA  0.0005240888 0.0004243135 -4.177369e-055.090559e-03 

 

As we have mentioned before, covariance is a statistical descriptive measure that indicates 

relationship between returns of two securities. Covariance is negative if the return on one 

asset is above its expected value while the return on the other asset is below its expected 

value. Sigma.mat matrix reveals that only TSLA and GOOGL exhibit a negative relationship. 
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If TSLA price goes up, it is likely that GOOGL price will go down. Numbers on the diagonal 

of the matrix are variances of the portfolio stocks. These variances are actually covariances of 

the same stocks and represent risk of portfolio stocks. If variance is 0, there is no dispersion 

of returns or risk. Variance greater than 0 shows dispersion of outcome, the greater the 

number the greater the dispersion. According to the covariance matrix, the riskiest asset is 

TSLA because it has the highest variance. While covariance is meaningful because it 

influences portfolio risk, portfolio correlation coefficient is more useful because it 

standardizes covariance (Gibson, 2004). 

R function for correlation is: 
>cor(M) 
             FB      AMZN       GOOGL        TSLA 
FB    1.0000000 0.6537891  0.45522085  0.18934988 
AMZN  0.6537891 1.0000000  0.52124622  0.17054963 
GOOGL 0.4552208 0.5212462  1.00000000-0.01989787 
TSLA  0.1893499 0.1705496 -0.019897871.00000000 

 

Correlation is a measure of strength and direction of linear relationship. It is a number 

between -1 and +1. A correlation of 0 indicates no linear relation between the two variables. 

Combining securities with zero correlation can reduce the risk of the portfolio. Correlation 

matrix shows that all portfolio stocks, except TSLA and GOOGL, have positive correlation 

indicating that positively correlated stocks move in the same direction. From modern portfolio 

theory standpoint, high correlation between stocks is not a good indicator. If stocks in the 

portfolio are highly correlated then when one of the stocks takes a downturn, probably entire 

portfolio will take downturn. Thus, for risk-averse investor it is important to have assets 

whose correlation is as low as possible. Stocks in the selected portfolio have correlation 

below 0.70 which is a good starting point. The highest correlation in the selected portfolio is 

between AMZN and FB (0.65) whereas the lowest correlation, and even negative, is between 

TSLA and GOOGL (-0.02). Negatively correlated assets are called hedging assets and they 

represent very effective way of reducing portfolio risk.  

Figure 6 displays correlation map that brings better visualization of the strength of 

relationship between selected stocks. 
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Figure 6:Correlation Map 

Source: Authors creation (R –studio) 

 

6.3 Finding the Envelope of Financial Assets 

 

The first case considers solving the problem of minimizing risk with some target expected 

return if short sales are allowed. It will be solved as a constrained optimization problem by 

using the Lagrange multiplier method. This model does not have constraints on assets’ 

weights described by vector x, that is it permits short sales. In our example we present the use 

of matrix algebra which simplifies many of the computations. Results are implemented in 

RMetrics. Let 𝑥 denote the share of wealth invested in stock i, i=1,…,4, and assume that all 

wealth is invested in four assets considered so that  

𝑥ி + 𝑥ெ + 𝑥ீைைீ + 𝑥்ௌ = 1. 

 

The portfolio return, 𝑅௫  is the random variable 

𝑹𝒑𝒙 = 𝒙𝑭𝑩𝑹𝑭𝑩 + 𝒙𝑨𝑴𝒁𝑹𝑨𝑴𝒁 + 𝒙𝑮𝑶𝑶𝑮𝑳𝑹𝑮𝑶𝑶𝑮𝑳 + 𝒙𝑻𝑺𝑳𝑨𝑹𝑻𝑺𝑳𝑨. 

(10) 

The expected return on the portfolio is equal to 

𝑅௫ = 𝜇௫ = 𝑥ி𝜇ி + 𝑥𝜇ெ + 𝑥ீைைீ𝜇ீைைீ + 𝑥்ௌ𝜇்ௌ. 

(11) 

The variance of the portfolio return is equal to 
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𝜎ଶ
௫ = 𝑥ଶ

ி𝜎ଶ
ி + 𝑥ଶ

ெ𝜎ଶ
ெ + 𝑥ଶ

ீைைீ𝜎ଶ
ீைைீ + 𝑥ଶ

்ௌ𝐵ଶ
்ௌ + 2𝑥ி𝑥ெ𝜎ிெ

+ 2𝑥ி𝑥ீைைீ𝜎ிீைைீ + 2𝑥ி𝑥்ௌ𝜎ி்ௌ + 2𝑥ெ𝑥ீைைீ𝜎ெீைைீ

+ 2𝑥ெ𝑥்ௌ𝜎ெ்ௌ + 2𝑥ீைைீて𝑥ㅤ்ௌ 𝜎ீைைீ்ௌ 

(12) 

 

The variance of the portfolio return depends on four variance terms and 12 covariance terms. 

Even with four assets, the algebra representing the portfolio characteristics in terms of 

expected return and variance is very complicated. With matrix notation we can simplify 

calculation. 

Return data using matrix notation from four selected stocks can be represented as 

 

𝜇 = ቌ

𝜇ி

𝜇ெ

𝜇ீைைீ
𝜇்ௌ

ቍ = ቌ

0.00652
0.00181
0.00472

−0.00069

ቍ 

(13) 

 4 × 4 covariance matrix of returns is equal to 

 

Σ = ൮

0.001504 0.000884  0.000526 0.000524
0.000884 0.001216 0.000535 0.000424
0.00052

0.000524
0.000535
0.000424

  0.000866
−4.18𝐸05

−4.18𝐸05
0.005091

൲. 

 

(14) 

Covariance matrix is symmetric since 𝑐𝑜𝑣൫𝑅ி,𝑅ெ൯ = 𝑐𝑜𝑣(𝑅ெ,𝑅ி). 

 

 

6.4 Portfolio Computations in R 

 

First we construct an equally weighted portfolio  

𝑥ி = 𝑥ெ = 𝑥ீைைீ = 𝑥்ௌ = 1/4  that has return 𝑅௫ = 𝐱𝐑 

 
>x.vec = rep(1,4)/4 
>names(x.vec) <-asset.names 
>mu.p.x<- crossprod(x.vec,mu.vec) 
> sig2.p.x <- t(x.vec)%*%sigma.mat%*%x.vec 
>sig.p.x<- sqrt(sig2.p.x) 
>mu.p.x 
            [,1] 
[1,] 0.003088797 
>sig.p.x 
           [,1] 
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[1,] 0.02996684 
 

 
Next, we choose another portfolio with weight vector 

 
y=(y, y, yୋୋ, yୗ) =(0.25, 0.15, 0.5, 0.10) and return 𝑅௬ = 𝐲𝐑 

 

Covariance between 𝑅௬ and 𝑅௫ is 

 
>y.vec = c(0.25, 0.15, 0.5, 0.10) 
>names(x.vec) <- asset.names 
>sig.xy<- t(x.vec)%*%sigma.mat%*%y.vec 
>sig.xy 
             [,1] 
[1,] 0.0007140364 

 

 

 

Global Minimum Variance Portfolio 

 

Global minimum variance portfolio gm=(gm, gm, gmୋୋ, gmୗ)  solves the 

constrained minimization problem 

Min σ୮୫
ଶ = 𝐠𝐦 Σ 𝐠𝐦  s.t.𝐠𝐦𝟏 = 1 

 

The Lagrangian function for this problem is as follows: 

 

L(𝑔𝑚ி, 𝑔𝑚ெே , 𝑔𝑚ீைைீ , 𝑔𝑚்ௌ, 𝜆) = 𝑔𝑚ଶ
ி

𝜎ଶ
ி + 𝑔𝑚ଶ

ெ
𝜎ଶ

ெ +

𝑔𝑚ଶ
ீைைீ

𝜎ଶ
ீைைீ + 𝑔𝑚்ௌ𝜎ଶ

்ௌ + 2𝑔𝑚ி𝑔𝑚ெ𝜎ிெ +

2𝑔𝑚ி𝑔𝑚ீைைீ𝜎ிீைைீ + 2𝑔𝑚ி𝑔𝑚்ௌ𝜎ி்ௌ + 2𝑔𝑚ெ𝑔𝑚ீைைீ𝜎ெீைைீ +

2𝑔𝑚ெ𝑔𝑚்ௌ𝜎ெ்ௌ + 2𝑔𝑚ீைைீ𝑔𝑚்ௌ𝜎ீைைீ்ௌ + 𝜆(𝑔𝑚ி + 𝑔𝑚ெே +

𝑔𝑚屻ைைீ + 𝑔𝑚்ௌ − 1) 

(15) 

 

The first order conditions for minimum are 

0 =
𝜕𝐿

𝜕𝑔𝑚ி
= 2𝑔𝑚ி𝜎ଶ

ி + 2𝑔𝑚ெ𝜎ிெ + +2𝑔𝑚ீைைீ𝜎ிீைைீ + 2𝑔𝑚்ௌ𝜎ி்ௌ

+  𝜆 
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0 =
𝜕𝐿

𝜕𝑔𝑚ெ
= 2𝑔𝑚ெ𝜎ଶ

ெ + 2𝑔𝑚ி𝜎ிெ + 2𝑔𝑚ீைைீ𝜎ெீைைீ

+ 2𝑔𝑚்ௌ𝜎ெ்ௌ +  𝜆 

 

0 =
𝜕𝐿

𝜕𝑔𝑚ீைைீ

= 2𝑔𝑚ீைைீ𝜎ଶ
ீைைீ + 2𝑔𝑚ி𝜎ிீைைீ + 2𝑔𝑚ெ𝜎ெீைைீ

+ 2𝑔𝑚்ௌ𝜎ீைைீ்ௌ +  𝜆 

 

0 =
𝜕𝐿

𝜕𝑔𝑚்ௌ

= 2𝑔𝑚
𝑇𝑆𝐿𝐴

𝜎2
𝑇𝑆𝐿𝐴 + 2𝑔𝑚

𝐹𝐵
𝜎𝐹𝐵𝑇𝑆𝐿𝐴 + 2𝑔𝑚

𝐴𝑀𝑍
𝜎𝐴𝑀𝑍𝑇𝑆𝐿𝐴

+ 2𝑔𝑚
𝐺𝑂𝑂𝐺𝐿

  𝐺𝑂𝑂𝐺𝐿𝑇𝑆𝐿𝐴 + 𝜆 

 

0 =
𝜕𝐿

𝜕𝜆
= 𝑔𝑚ி + 𝑔𝑚ெே + 𝑔𝑚ீைைீ + 𝑔𝑚்ௌ − 1 

(16) 

 

The solutions of the system of five linear equations obtained from the first order conditions 

(24) are the weights of the assets in the global minimum variance portfolio. In a matrix form 

the equations of the first order conditions can be written as 

 

⎝

⎜
⎛

2𝜎ி     
ଶ 2𝜎ிெே 2𝜎ிீைைீ 2𝜎ி்ௌ         1

2𝜎ிெே 2𝜎ெே
ଶ 2𝜎ெேீைைீ 2𝜎ெே்ௌ 1

2𝜎ிீைைீ

2𝜎ி்ௌ

1

2𝜎ெேீைைீ

2𝜎ெே்ௌ

1

2𝜎ீைைீ
ଶ

2𝜎ீைைீ்ௌ

1

2𝜎ீைைீ்ௌ

2𝜎்ௌ
ଶ

1

1
1
0⎠

⎟
⎞

⎝

⎛

𝑔𝑚ி

𝑔𝑚ெே
𝑔𝑚ீைைீ
𝑔𝑚்ௌ

𝜆 ⎠

⎞ =

⎝

⎜
⎛

0
0
0
0
1⎠

⎟
⎞

 

 

In shorter notation, it can be written as 

ቀ
2𝚺 𝟏
𝟏𝐓 0

ቁ ቀ
𝒈𝒎

𝜆
ቁ = ቀ

𝟎
1

ቁ 

 

or 𝐀୫𝐳 = 𝐛 

(17) 

Where 

𝑨 = ቀ
2𝚺 𝟏
𝟏𝑻 0

ቁ,𝒛 = ቀ
𝒈𝒎

𝜆
ቁ and𝐛 = ቀ

𝟎
1

ቁ 
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The solution is 

𝒛 = 𝑨
ିଵ 𝐛. 

(18) 

The first four elements of𝒛 are the weights for the global minimum variance portfolio with 

expected return  𝜇ୀ𝐠𝐦𝛍 and varianceσ୮୫
ଶ = 𝐠𝐦Σ 𝐠𝐦. 

 

Using the data for the expected returns and variances from selected stocks and equation (24) 

we compute the weight of the assets in the global minimum variance portfolio. In R we do it 

by running the following set of commands: 

 
>top.mat<- cbind(2*sigma.mat, rep(1, 4)) 
>bot.vec<- c(rep(1, 4), 0) 
>Am.mat<- rbind(top.mat, bot.vec) 
>b.vec<- c(rep(0, 4), 1) 
>z.m.mat<- solve(Am.mat)%*%b.vec 
>m.vec<- z.m.mat[1:4,1] 
>top.mat<- cbind(2*sigma.mat, rep(1, 4)) 
>bot.vec<- c(rep(1, 4), 0) 
>Am.mat<- rbind(top.mat, bot.vec) 
>b.vec<- c(rep(0, 4), 1) 
>z.m.mat<- solve(Am.mat)%*%b.vec 
>gm.vec<- z.m.mat[1:4,1] 
 
>gm.vec 
 
        FB       AMZN      GOOGL       TSLA  
0.09065791 0.17538412 0.62052740 0.11343058 
 

The global minimum variance portfolio has weights 

𝑔𝑚ிୀ 0.0906,  𝑔𝑚ெே = 0.1754,  𝑔𝑚ீைைீ = 0.6205,  𝑔𝑚்ௌ = 0.1134 

 

The expected return on this portfolio   𝜇ୀ 𝐠𝐦𝛍 is obtained as 

 
>mu.gmin<- as.numeric(crossprod(gm.vec, mu.vec)) 
 
>mu.gmin 
[1] 0.003758077 
 

The portfolio variance σ୮୫
ଶ = 𝐠𝐦Σ 𝐠𝐦 and standard deviation𝜎 are  

 
> sig2.gmin <- as.numeric(t(gm.vec)%*%sigma.mat%*%gm.vec) 
>sig.gmin<- sqrt(sig2.gmin) 
 
> sig2.gmin 
[1] 0.000673434 
> 
>sig.gmin 
[1] 0.02595061 

 

Efficient portfolio 
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As it has already been stated, efficient portfolios lie in the upper part of the minimum 

variance set that is the part above the global minimum variance portfolio. According o 

Markowitz framework, we assume that investors wish to find portfolios that have the best 

expected return-risk trade-off. In this analysis, investors seek to find portfolios that minimize 

portfolio’s risk (measured by portfolio variance) subject to a target expected return level. 

Min σ୮୶
ଶ = 𝐱Σ𝐱s.t.𝐱𝟏 = 1 and   𝜇ୀ𝐱𝝁 =   𝜇 

(19) 

The efficient portfolio frontier is a graph of values of expected returns and variances for the 

set of efficient portfolios created by solving equation (25) for all possible target expected 

return levels which are greater than the expected return of the global minimum variance 

portfolio. 

The corresponding Lagrangian function is equal to 

𝐿(𝑥, 𝜆ଵ, 𝜆ଶ) = 𝐱்Σ 𝐱 + 𝜆ଵ൫𝐱𝝁 −   𝜇൯ +  𝜆ଶ(𝐱𝟏 − 1). 

Now we have two Lagrange multipliers because we have two constraints. 

From the first order conditions we get 

  𝜕𝐿

  𝜕𝑥
  =  2Σ 𝐱 + 𝜆ଵ𝛍 + 𝜆ଶ𝟏 = 0 

𝜕𝐿

𝜕𝜆ଵ
= 𝐱𝝁 −   𝜇 = 0              

𝜕𝐿

𝜕𝜆ଶ
= 𝐱𝟏 − 1 = 0 

 

In the matrix form, this can be represented as 

 

൭

2𝚺 𝝁 𝟏

𝝁் 0 0

𝟏் 0 0

൱ ൭

𝐱
𝜆ଵ

𝜆ଶ

൱ = ൭
𝟎

  𝜇

1

൱ 

Or  
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𝐀𝐳௫ = 𝐛 

(20) 

Where 

 

𝐀 = ൭
2𝚺 𝝁 𝟏

𝝁𝑻

𝟏𝑻

0 0
0 0

൱,𝒛௫ = ቆ

𝐱
𝜆ଵ

𝜆ଶ

ቇ 𝑎𝑛𝑑𝒃 = ቆ
𝟎

  𝜇
𝑝0

1
ቇ 

 

Solution for 𝒛௫is equal to 

𝒛௫ = 𝐀ି𝟏𝒃𝟎 

(21) 

The first three elements of 𝒛௫are the weights for the minimum variance portfolio with 

expected return  𝜇௫ =   𝜇. In order to obtain efficient portfolios, we solve constrained 

minimization problem (26) by using equation (28) for expected returns   𝜇 greater or equal 

to the expected return of the global minimum variance portfolio  𝜇 = 0.00375. In the 

following examples we will see that diversification yields benefit to investors. We will 

calculate two portfolios that have the same expected returns as the single-assets portfolios 

(Facebook and Google) but due to diversification they will have lower variance or risk. 

First we calculate in R a mean-variance portfolio𝐱 = (x, x, xୋୋ, xୗ)with the 

same expected return as Facebook; 𝜇ி = 0.0065. Hence, target expected return will be 

  𝜇 = 𝜇ி = 0.0065. 

>top.mat<- cbind(2*sigma.mat, mu.vec, rep(1, 4)) 
>mid.vec<- c(mu.vec, 0, 0) 
>bot.vec<- c(rep(1, 4), 0, 0) 
>A.mat<- rbind(top.mat, mid.vec, bot.vec) 
>bfb.vec = c(rep(0, 4), mu.vec["FB"], 1) 
>z.mat<- solve(A.mat)%*%bfb.vec 
>x.vec<- z.mat[1:4,] 
 

 
The efficient portfolio with the same expected return as Facebook has portfolio weights𝐱 =

(x, x, xୋୋ, xୗ). 

(22) 

 
>x.vec 
         FB        AMZN       GOOGL        TSLA  
 0.54294471 -0.33764563  0.76550396  0.02919696  
 
 

The expected return on this portfolio is equal to the target return 𝜇ி = 0.0065  
>mu.px = as.numeric(crossprod(x.vec, mu.vec)) 
 
>mu.px 
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[1] 0.006525464 
 

The portfolio variance σ୮୶
ଶ = 𝐱Σ 𝐱 and standard deviation𝜎௫ are equal to 

 
> sig2.px = as.numeric(t(x.vec)%*%sigma.mat%*%x.vec) 
>sig.px = sqrt(sig2.px) 
 
> sig2.px 
[1] 0.0009315558 
 
>sig.px 
[1] 0.0305214 

 
 
It can be noticed that the calculated variance is smaller than the variance for Facebook alone 

with the same expected return. 

Next, by using equation (25) we calculate the minimum variance portfolio 𝐲 =

(y, y, yୋୋ, yୗ) with the same expected return as Google; 𝜇ୋୋ = 0.00472. 

This portfolio is efficient because target return of portfolio y is greater than expected return of 

global minimum variance portfolio𝜇ୋୋ 𝑖𝑠 >   𝜇 ., 

Weights for 𝐲 = (y, y, yୋୋ, yୗ) are 

(23) 

>bgoogl.vec = c(rep(0, 4), mu.vec["GOOGL"], 1) 
>z.mat = solve(A.mat)%*%bgoogl.vec 
>y.vec = z.mat[1:4,] 
 
>y.vec 
          FB         AMZN        GOOGL         TSLA  
 0.247802964 -0.002865809  0.670898867  0.084163977  
 

 
The portfolio y’s expected return and standard deviation are: 
 
> mu.py = as.numeric(crossprod(y.vec, mu.vec)) 
> sig2.py = as.numeric(t(y.vec)%*%sigma.mat%*%y.vec) 
> sig.py = sqrt(sig2.py) 
 
> mu.py 
[1] 0.004719594 
 
> sig2.py 
[1] 0.000704594 
 
> sig.py 
[1] 0.02654419 
 
 

The covariance between the portfolio returns R௫ and R௬ is as follows: 
 
>sigma.xy = as.numeric(t(x.vec)%*%sigma.mat%*%y.vec) 
>rho.xy = sigma.xy/(sig.px*sig.py) 
 
>sigma.xy 
[1] 0.0007631173 
 
>rho.xy 
[1] 0.9419272 
 
 
 
 



 

Page 38 

Computing the efficient frontier 

 
The linear combination of two mean-variance efficient portfolios gives a third mean-variance 

efficient portfolio, provided the new portfolio expected return is not smaller than that of 

the minimum-variance portfolio (this is true in particular for convex combinations) 28 

In following example, the linear combination of two efficient portfolios will yield two 

portfolios, one located on the efficient frontier and the other located on the inefficient part 

of the envelope set. 

Let 𝐲 = (y, y, yୋୋ, yୗ)and𝐱 = (x, x, xୋୋ, xୗ) be two minimum 

variance efficient portfolios with different target expected returns. 

 

Portfolio x solves  

 
Minσ୮୶

ଶ = 𝐱Σ 𝐱  s.t.  𝐱𝟏 = 1 and 𝐱𝛍 =   μ୮ 
 
 and portfolio y solves 
 
Min σ୮୶

ଶ = 𝐲Σ 𝐲  s.t.  𝐲𝟏 = 1 and 𝐲𝛍 =   μ୮ଵ. 
 
Let 𝛼 be any constant. We define portfolio z as a linear combination of portfolios xand y, 
which is: 
 
z=α ∗ 𝐱 + (1 − α) ∗ 𝐲 

(24) 

Hence portfolio z is a minimum variance portfolio with expected return and variance equal to 
 
  𝜇௭=𝒛𝝁 =  α ∗ 𝜇௫ + (1 − α) ∗   𝜇௬ 

(25) 

σ୮
ଶ = 𝐳Σ 𝐳 = αଶσ୮୶

ଶ + (1 − α)ଶσ୮୷
ଶ +2 α(1 − α)σ୶୷ 

(26) 

Where  

σ୮୶
ଶ = 𝐱Σ 𝐱 

σ୮୷
ଶ = 𝐲Σ 𝐲 

σ୶୷ = 𝐱Σ 𝐲 

In R, for any number α (here we use α =0,5)portfolio z  can be computed as follows: 
 
> a = 0.5 
>z.vec<- a*x.vec + (1-a)*y.vec 
 
>z.vec 

 
28Luciano, Elisa & Dumas, Bernard. (2017). The Economics of Continuous-time Finance, MIT Press. 
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         FB        AMZN       GOOGL        TSLA  
 0.39537384 -0.17025572  0.71820142  0.05668047  

 
Note that portfolio z is not necessarily efficient. 
The expected return, variance and standard deviation of portfolio z are 
 
>mu.pz<- as.numeric(crossprod(z.vec, mu.vec)) 
> sig2.pz <- as.numeric(t(z.vec)%*%sigma.mat%*%z.vec) 
>sig.pz<- sqrt(sig2.pz) 
 
>mu.pz 
[1] 0.005622529 
 
> sig2.pz 
[1] 0.0007905961 
 
>sig.pz 
[1] 0.02811754 
 
 

Next we compute portfolio with the expected return equal to the expected return on Amazon 

using two already calculated efficient portfolios (equations (28) and (29)) 

 
 
μ୮ = αμ୮୶ + (1 − α)μ୮୷=𝜇ெே=0.001807 
 

Solving for constant 𝛼 =
ఓಲಾೋಿିఓ

ఓೣିఓ
=

.ଵ଼ି.ସଵଽ

.ହଶହି.ସଵଽ
=-1,612 

 
In R, weights for portfolio 𝐳௭ are computed as follows: 
 
>a.amzn<- (mu.vec["AMZN"] - mu.py)/(mu.px - mu.py) 
>z.amzn<- a.amzn*x.vec + (1 - a.amzn)*y.vec 
 
>z.amzn 
        FB       AMZN      GOOGL       TSLA  
-0.2282613  0.5371348  0.5183006  0.1728259  
 

The expected return, variance and standard deviation on this portfolio are 
 
>mu.pz.amzn = as.numeric(crossprod(z.amzn, mu.vec)) 
> sig2.pz.amzn = as.numeric(t(z.amzn)%*%sigma.mat%*%z.amzn) 
>sig.pz.amzn = sqrt(sig2.pz.amzn) 
>mu.pz.amzn 
 
[1] 0.001806721 
> 
> sig2.pz.amzn 
[1] 0.0008017729 
 
>sig.pz.amzn 
[1] 0.02831559 

 
 
𝐳is inefficient portfolio because it’s expected return is smaller than expected return on 

the global minimum variance portfolio. 

Plotting efficient frontier 

 
In order to compute the efficient frontier, which is the part of envelope portfolios whose 

expected return is greater than the expected return on the global minimum variance portfolio, 
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first we compute the minimum variance set by using equation (25) and two efficient 

portfolios. For the first portfolio we use the global minimum variance and for the second we 

use the portfolio x whose target expected return is equal to the highest expected return among 

single asset portfolios in consideration. It must be noted that a convex combination of two 

efficient portfolios is not necessarily efficient, but for sure it is on the envelope. 

To compute and plot the efficient frontier in R we use:  

 Global minimum variance portfolio:σ୮୫
ଶ = 𝐠𝐦Σ 𝐠𝐦 and  𝜇ୀ𝐠𝐦𝛍 

 Someefficient portfolio x with target expected return equal to the maximum expected 

return of the assets under consideration, in our case Facebook; σ୮୶
ଶ = 𝐱Σ 𝐱 and

  𝜇௫ୀ𝐱𝛍 ;or some other efficient portfolio 

 Covariance of the two above calculated portfolios; σ୫୶ = 𝐠𝐦Σ 𝐱 

Once we have that, we have to: 

 Set an initial grid of 𝛼 values and calculate frontier portfolios z using equations (28), 

(29) and (30). 

 Plot   μ୮and σ୮ and adjust values of 𝛼 so that portfolios can be visible 

 
> a = seq(from=1, to=-5, by=-0.15) 
a = seq(from=-5, to=5, by=0.09) 
 
>n.a = length(a) 
>z.mat = matrix(0, n.a, 4) 
>mu.z = rep(0, n.a) 
> sig2.z = rep(0, n.a) 
> sig.mx = t(gm.vec)%*%sigma.mat%*%x.vec 
> for (i in 1:n.a) { 
+   z.mat[i, ] = a[i]*gm.vec + (1-a[i])*x.vec 
+   mu.z[i] = a[i]*mu.gmin + (1-a[i])*mu.px 
+   sig2.z[i] = a[i]^2 * sig2.gmin + (1-a[i])^2 * sig2.px + 
+     2*a[i]*(1-a[i])*sig.mx } 
> 
> plot(sqrt(sig2.z), mu.z, type="b", ylim=c(-0.0009, 0.008), xlim=c(0, 0.08 ), 
+      pch=16, col="blue", ylab=expression(mu[p]), 
+      xlab=expression(sigma[p])) 
> 
>text(sig.gmin, mu.gmin, labels="Global min", pos=2) 
>text(sig.px, mu.px, labels="x=μ_fb", pos=2) 
>text(sig.py, mu.py, labels="y=μ_googl", pos=2) 
>text(sig.pz.amzn, mu.pz.amzn, labels="z_amzn", pos=2) 
>text(sdFb, mu.vec["FB"], labels="FB", pos=4) 
>text(sdgoogl, mu.vec["GOOGL"], labels="GOOGL", pos=4) 
>text(sig.pz, mu.pz, labels="z", pos=4) 
>text(sdamzn, mu.vec["AMZN"], labels="AMZN", pos=4) 
>text(sdtsla, mu.vec["TSLA"], labels="T", pos=4) 
> 
> 
>points(sig.pz.amzn, mu.pz.amzn, col="red") 
>points(sig.px, mu.px, col="red") 
>points(sig.py, mu.py, col="red") 
>points(sig.gmin, mu.gmin, col="red") 
>points(sdFb, mu.vec["FB"], col="red") 
>points(sdgoogl, mu.vec["GOOGL"], col="red") 
>points(sig.pz, mu.pz, col="red") 
>points(sdamzn, mu.vec["AMZN"], col="red") 
>points(sdtsla, mu.vec["TSLA"], col="red") 
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Figure 7:Efficient Frontier 

Source: Authors creation (R-studio) 
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Figure 8:Envelope set 

Source: Authors creation (R-studio) 

 

Figure 7 shows the efficient frontier and figure 8 shows the envelope set of portfolios 

containing four selected stocks. As it has already been mentioned, global minimum variance 

portfolio is the border portfolio on the envelope set that separates inefficient part from the 

efficient frontier. Thus, it is the point where efficient frontier starts. In our graphs global 

minimum variance portfolio is dominated by other portfolios, such as portfolios y, x and z 

that offer better expected return for the same level of risk. Figures 7 and 8 also show the 

means and standard deviations of the three stocks (AMZN, GOOGL and FB) separately. They 

are plotted off to the right of the envelope set in the feasible set. If we move directly to the left 
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from single asset portfolios, we will reach a portfolio on the frontier that has smaller risk 

without affecting the return (portfolio AMZN and z_amzn). However, if we move directly up 

from these individual portfolios, we will reach a portfolio that has greater return with the 

same level of risk. These single asset portfolios (AMZN, GOOGL and FB) are not efficient 

for an investor who can allocate her/his wealth across all four financial assets. From this 

example we can draw conclusions about the advantages of portfolio diversification, i.e. that 

we can improve the risk-return trade-off by increasing the number of financial assets in which 

we can invest. 

 

6.4 Mean-Variance Portfolio Computations in R 

 

Mean-variance (MV) portfolios in R are specified by time series data, portfolio specification 

object and constraints. Here we use the default settings for porfolioSpec which deals with MV 

portfolio and minimizes the risk using the quadprog solver. Feasible, efficient and global 

minimum risk portfolio will be calculated using functions feasiblePortfolio, 

efficientPortfolio and minvariancePortfolio 

We consider the case of long-only constraints, that is the case when the weights of the assets 

are non-negative. 

 

Feasible portfolio 

 

To compute a feasible portfoliowe need to specify the portfolio weights. In this case we will 

define equal weights portfolio for our data set of returns. Then we can compute properties of 

the feasible portfolio EW using function feasiblePortfolio(). 

 

>ewSpec<- portfolioSpec() 
>nAssets<- ncol(portfolioReturns) 
>setWeights(ewSpec) <- rep(1/nAssets, times = nAssets) 
>ewPortfolio<- feasiblePortfolio( 
+      data = portfolioReturns, 
+      spec = ewSpec, 
+      constraints = "LongOnly") 
>     print(ewPortfolio) 
 
Title: 
 MV FeasiblePortfolio 
Estimator:         covEstimator 
Solver:            solveRquadprog 
Optimize:          minRisk 
Constraints:       LongOnly 
 
PortfolioWeights: 
   FB  AMZN GOOGL  TSLA  
 0.25  0.25  0.25  0.25  
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CovarianceRiskBudgets: 
    FB   AMZN  GOOGL   TSLA  
0.2389 0.2129 0.1307 0.4174  
 
Target ReturnsandRisks: 
meanCovCVaRVaR 
0.0031 0.0300 0.0721 0.0390 
 

Efficient portfolio 

Efficient portfolio is a portfolio which has the lowest risk for some given level of return. 

Using the same target return as Google portfolio and EW portfolio, we compute efficient 

portfolios G and E using function efficientPortfolio(). 

It can be noticed that portfolio G has the lower risk than portfolio Google for the same 

expected return.The same conclusion is reached for portfolios EW and E. 

 

>mu.vec["GOOGL"] 
      GOOGL  
0.004719594  
 

>sdgoogl<-sqrt(sum((GOOGL-mean(GOOGL))^2/(length(GOOGL)-1))) 
 
>sdgoogl 
[1] 0.02942481 
 

>minriskSpec<- portfolioSpec() 
>targetReturn<-0.0047  
>setTargetReturn(minriskSpec) <- targetReturn 
>G_Portfolio<- efficientPortfolio( 
+           data = portfolioReturns, 
+           spec = minriskSpec, 
+           constraints = "LongOnly") 
>        print(G_Portfolio) 
 
Title: 
 MV EfficientPortfolio 
Estimator:         covEstimator 
Solver:            solveRquadprog 
Optimize:          minRisk 
Constraints:       LongOnly 
 
PortfolioWeights: 
    FB   AMZN  GOOGL   TSLA  
0.2446 0.0008 0.6699 0.0848  
 
CovarianceRiskBudgets: 
    FB   AMZN  GOOGL   TSLA  
0.2648 0.0007 0.6705 0.0641  
 
Target ReturnsandRisks: 
meanCovCVaRVaR 
0.0047 0.0265 0.0560 0.0358  
 
 
 
>minriskSpec<- portfolioSpec() 
>targetReturn<-0.0031  
>setTargetReturn(minriskSpec) <- targetReturn 
>E_Portfolio<- efficientPortfolio( 
+           data = portfolioReturns, 
+           spec = minriskSpec, 
+           constraints = "LongOnly") 
>        print(E_Portfolio) 
 
Title: 
 MV EfficientPortfolio 
Estimator:         covEstimator 
Solver:            solveRquadprog 
Optimize:          minRisk 
Constraints:       LongOnly 
 
PortfolioWeights: 
    FB   AMZN  GOOGL   TSLA  
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0.0000 0.3028 0.5610 0.1362  
 
CovarianceRiskBudgets: 
    FB   AMZN  GOOGL   TSLA  
0.0000 0.3192 0.5230 0.1578  
 
Target ReturnsandRisks: 
meanCovCVaRVaR 
0.0031 0.0262 0.0596 0.0360  
 

Global minimum varianceportfolio 

 

Now we compute the global minimum varianceportfolio GM, which is the efficient portfolio 

with the lowest possible risk. We do this by using function minvariancePortfolio(). 

 
>globminSpec<- portfolioSpec() 
>globminPortfolio<- minvariancePortfolio( 
+         data = portfolioReturns, 
+         spec = globminSpec, 
+         constraints = "LongOnly") 
>        print(globminPortfolio) 
 
Title: 
 MV Minimum VariancePortfolio 
Estimator:         covEstimator 
Solver:            solveRquadprog 
Optimize:          minRisk 
Constraints:       LongOnly 
 
PortfolioWeights: 
    FB   AMZN  GOOGL   TSLA  
0.0907 0.1754 0.6205 0.1134  
 
CovarianceRiskBudgets: 
    FB   AMZN  GOOGL   TSLA  
0.0907 0.1754 0.6205 0.1134  

 
Target ReturnsandRisks: 

meanCovCVaRVaR 
0.0038 0.0260 0.0572 0.0342 
 

R output 1 

Mean-variance portfolio frontiers 

 

Function portfolioFrontier() computes portfolios along the efficient frontier and 

minimum variance set. It is very simple to compute the efficient frontier for the default MV 

setting.There is only a few functions needed. 

 

First we compute the efficient frontier for the selected stocks. 

 
>Frontier<- portfolioFrontier(portfolioReturns) 
>           print(Frontier) 
 
Title: 
 MV PortfolioFrontier 
Estimator:         covEstimator 
Solver:            solveRquadprog 
Optimize:          minRisk 
Constraints:       LongOnly 
PortfolioPoints:  5 of 49  
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PortfolioWeights: 
       FB   AMZN  GOOGL   TSLA 
1  0.0000 0.0589 0.0000 0.9411 
13 0.0000 0.7504 0.0070 0.2427 
25 0.0000 0.3294 0.5281 0.1425 
37 0.2562 0.0000 0.6653 0.0785 
49 1.0000 0.0000 0.0000 0.0000 
 
CovarianceRiskBudgets: 
       FB   AMZN  GOOGL   TSLA 
1  0.0000 0.0061 0.0000 0.9939 
13 0.0000 0.6682 0.0024 0.3294 
25 0.0000 0.3517 0.4758 0.1725 
37 0.2798 0.0000 0.6640 0.0562 
49 1.0000 0.0000 0.0000 0.0000 
 
Target ReturnsandRisks: 
meanCovCVaRVaR 
1  -0.0005  0.0675  0.1349  0.1287 
13  0.0012  0.0338  0.0812  0.0434 
25  0.0030  0.0264  0.0608  0.0365 
37  0.0048  0.0266  0.0563  0.0358 
49  0.0065  0.0388  0.0944  0.0552 
 

Figure 9 shows weights along the envelope set of a long-only constrained mean-variance 

portfolio. The upper axis labels the target risk and the lower the target return. The black 

vertical line separates the efficient frontier of the inefficient part of the envelope set. Hence, 

the risk axis increases to both sides from the vertical line. 

 

 
Figure 9:Weights along envelope set 

Source: Authors creation (R-studio) 

 

Now we can plot the efficient frontier using generic function plot()and assigning points 

and texts to corresponding portfolios using function text()and points() 

 
>text(sig.p.x, mu.p.x, labels="EW", pos=1) 
> plot(longFrontier,1) # Plot EF 
> plot(longFrontier,2) # Min. RiskPortfolio 
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> plot(longFrontier,4) # Risk/Returnof Single Assets 
> plot(longFrontier,5) # EqualWeightsPortfolio 
> 
>text(sig.gmin, mu.gmin, labels="GM", pos=4) 
>text(sdFb, mu.vec["FB"], labels="FB", pos=4) 
>text(sdgoogl, mu.vec["GOOGL"], labels="GOOGL", pos=4) 
>text(sdamzn, mu.vec["AMZN"], labels="AMZN", pos=4) 
>text(sig.p.x, mu.p.x, labels="EW", pos=1) 
>text(0.026, 0.0031, labels="E", pos=1) 
>text(0.0265, 0.0047, labels="G", pos=3) 
>points(0.026, 0.0031,pch=15, col="blue") 
>points(0.0265, 0.0047,pch=23, col="green") 
> 
> 
>legend("bottomleft",c("efficientfrontier", "equalweightsportfolio","global minimum 
portfolio"),lty=c(5,NA,NA), 
+                       lwd=c(5,0,1),pch=c(15,16,15), col=c("black","blue","red"), 
pt.cex=c(1,1,1),cex=0.7) 
> 
>legend("bottomright",c("G_μ_google", "E_μ_EW"),lty=c(NA,NA), 
+        lwd=c(1,1),pch=c(5,15), col=c("green","blue"), pt.cex=c(1,1),cex=0.7) 

 
Figure 10:Efficient Frontier_LongOnly 

Source: Authors creation (R-studio) 

 

 

The black part of the concave line graphed in the figure 10 represents efficient frontier formed 

by the set of efficient portfolios. Minimum variance set has endpoints of relevant assets that 
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offer minimum or maximum expected return (FB or TESLA). Highest mean-return portfolio 

is plotted on the endpoint of efficient frontier (Facebook) while the lowest, Tesla, is plotted 

on the endpoint of the inefficient part. Tesla is not displayed in the graph because its low 

return would not allow for nice and accurate representation of other portfolios. Portfolio GM, 

portfolio G and portfolio FB are all considered efficient portfolios because no greater 

expected return can be found without increasing the corresponding risk. Portfolio GM is the 

global minimum variance portfolio or efficient portfolio that offers the lowest possible risk 

for any combination of assets. Portfolio FB or maximum return/maximum risk portfolio 

corresponds to 100% investment in the Facebook stock. Global minimum portfolio is not 

composed only of the least risky assets because of diversification and its risk reducing effects. 

Portfolio G has the same target return as GOOGL asset but for the reason that consists of 

investments in other assets and thereby taking advantage of diversification, it offers lower risk 

than portfolio GOOGLE. The same can be concluded for the portfolio E that has the same 

target return as portfolio EW but due to diversification it yields lower risk for the same 

expected return. Portfolios AMZN, EW and GOOGL are inefficient. 

Comparing the frontier of a long-only constrained mean-variance portfolios (figure 10) with 

the frontier of unlimited short selling constrained mean-variance portfolios (figure 7 and 

figure 8) we notice that the first one is below the second (which allows short sales), meaning 

that for the same level of risk one achieves lower return. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 49 

 

Chapter 7 

 

CVaR and Comparison with MV 

 

7.1  Mean-CVaR Portfolio Computations in R 

 

Mean-CVaR portfolio is defined as all others portfolios in Rmetrics by the time series data, 

portfolio specification and the constraints. Therefore, specifying these three componentsis the 

same as for the mean-variance portfolio specification. The difference between the CVaR and 

the MV approach is that in the case of the CVaR approach the type of portfolio has to be 

specified. The significance level of 𝛼 is set to 0,05 by default but can be changed by the user. 

Constraint is “LongOnly” meaning short selling is prohibited. It can be also modified by the 

user. Printout of specification is as follows: 

 

 
> cvarSpec <- portfolioSpec() 
>  setType(cvarSpec) = "CVaR" 
>  setAlpha(cvarSpec) = 0.05 
>  setSolver(cvarSpec) = "solveRglpk" 
>  print(cvarSpec) 
 
Model List:  
 Type:                      CVaR 
 Optimize:                  minRisk 
 Estimator:                 covEstimator 
 Params:                    alpha = 0.05 
 
Portfolio List:  
 Target Weights:            NULL 
 Target Return:             NULL 
 Target Risk:               NULL 
 Risk-Free Rate:            0 
 Number of Frontier Points: 50 
 
Optim List:  
 Solver:                    solveRglpk 
 Objective:                 portfolioObjective portfolioReturn portfolioRisk 
 Trace:                     FALSE 

 

In following examples first we will compute equal weights feasible portfolio. 

 

 

> portfolioReturns <- na.omit(ROC(portfolioPrices)) 
> portfolioReturns <- as.timeSeries(portfolioReturns) 
> CvaRdata<-portfolioReturns 
> ewPortfolio <- feasiblePortfolio( 
+   data <- CvaRdata, 
+   spec <- cvarSpec, 
+   constraints <- "LongOnly") 
>  print(ewPortfolio) 
 
Title: 
 CVAR Feasible Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRglpk.CVAR  
 Optimize:          minRisk  
 Constraints:       LongOnly  
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Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
       0.25        0.25        0.25        0.25  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.2389      0.2129      0.1307      0.4174  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0031 0.0300 0.0721 0.0390  
 

 

 

The target return is specified as the return from the equally weighted portfolio. Now we 

search for the portfolio with the same return but lower covariance risk. 

 
>   minriskSpec <- portfolioSpec() 
>   setType(minriskSpec) <- "CVaR" 
>   setAlpha(minriskSpec) <- 0.05 
>   setSolver(minriskSpec) <- "solveRglpk.CVAR" 
>   setTargetReturn(minriskSpec) <- getTargetReturn(ewPortfolio@portfolio)["mean"] 
>   minriskPortfolio <- efficientPortfolio(data = CvaRdata, spec = minriskSpec, 
+                                           constraints = "LongOnly") 
>   print(minriskPortfolio) 
 
Title: 
 CVaR Efficient Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRglpk.CVAR  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 VaR Alpha:         0.05  
 
Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0000      0.1431      0.6327      0.2241  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0000      0.1176      0.5262      0.3562  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0031 0.0272 0.0576 0.0312  
 

 

 

The covariance risk has dropped from 0,03 to 0,027 for the same target return and weights 

have been completely changed.  

 

Next we compute the global minimum mean-CVaR portfolio, which is the efficient portfolio 

with the lowest possible risk. 

 

 

>    globminSpec <- portfolioSpec() 
>     setType(globminSpec) <- "CVaR" 
>     setAlpha(globminSpec) <- 0.05 
>     setSolver(globminSpec) <- "solveRglpk.CVAR" 
>     setTargetReturn(globminSpec) <- getTargetReturn(ewPortfolio@portfolio)["mean"] 
>     globminPortfolio <- minriskPortfolio(data = CvaRdata, spec = globminSpec, 
+                                           constraints = "LongOnly") 
>     print(globminPortfolio) 
 
Title: 
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 CVaR Minimum Risk Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRglpk.CVAR  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 VaR Alpha:         0.05  
 
Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0000      0.0000      0.8021      0.1979  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0000      0.0000      0.7407      0.2593  
 

Target Returns and Risks: 

  mean    Cov   CVaR    VaR  
0.0036 0.0273 0.0538 0.0411  

R output 2 
 
 
 

The portfolio is dominated by the low-risk Google stocks which contribute 80% to the 

weights of the optimized portfolio.  

 

7.2 Mean-CVaR Portfolio Frontiers 

 

In the following example long-only frontiers of CVaR and MV portfolios are computed. 

Output is shortened to 5 points starting with the portfolio with the lowest return and ending 

with the portfolio with the highest return. Since this is the case with restricted short sales, our 

frontier reaches both end of the efficient and inefficient part of the envelope. This will enable 

us to compare risk/return characteristics of the two optimization methods. Figures 11 and 12 

show the results for the weights along the minimum variance locus and efficient frontier.  

Target returns are increasing from left to right and target risks are increasing both to the left 

and right with respect to the black separation line. 

 
>    longSpec <- portfolioSpec() 
>      setType(longSpec) <- "CVaR" 
>      setAlpha(longSpec) <- 0.05 
>      setNFrontierPoints(longSpec) <- 5 
>      setSolver(longSpec) <- "solveRglpk.CVAR" 
>      longFrontier <- portfolioFrontier(data = CvaRdata, spec = longSpec, 
+                                         constraints = "LongOnly") 
> par(mfrow = c(3, 1), mar = c(3.5, 4, 4, 3) + 0.1) 
> weightsPlot(longFrontier) 
> text <- "Mean-CVaR Portfolio - Long Only Constraints" 
> mtext(text, side = 3, line = 3, font = 2, cex = 0.9) 
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Figure 11:Weights along envelope set of  mean-CVaR portfolios 

Source: Authors creation (R-studio) 

 

 

 
Figure 12: Weights along envelope set of MV portfolios 

Source: Authors creation (R-studio) 

 

 

The following example gives printout list of the weights, the target return and risk values 

along the envelope set for the CVaR portfolio, starting with the portfolio with the lowest 

return and ending with the highest return reached. 

 
>    longSpec <- portfolioSpec() 
>      setType(longSpec) <- "CVaR" 
>      setAlpha(longSpec) <- 0.05 
>      setNFrontierPoints(longSpec) <- 5 
>      setSolver(longSpec) <- "solveRglpk.CVAR" 
>      longFrontier <- portfolioFrontier(data = CvaRdata, spec = longSpec, 
+                                         constraints = "LongOnly") 
>      print(longFrontier) 
 
Title: 
 CVaR Portfolio Frontier  
 Estimator:         covEstimator  
 Solver:            solveRglpk.CVAR  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 Portfolio Points:  5 of 5  
 VaR Alpha:         0.05  
 
Portfolio Weights: 
  FB.Close AMZN.Close GOOGL.Close TSLA.Close 
1   0.0000     0.0000      0.0000     1.0000 
2   0.0000     0.6965      0.0114     0.2921 
3   0.0000     0.1593      0.5931     0.2476 
4   0.2305     0.0000      0.6927     0.0768 
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5   1.0000     0.0000      0.0000     0.0000 
 
Covariance Risk Budgets: 
  FB.Close AMZN.Close GOOGL.Close TSLA.Close 
1   0.0000     0.0000      0.0000     1.0000 
2   0.0000     0.5647      0.0035     0.4318 
3   0.0000     0.1275      0.4533     0.4192 
4   0.2441     0.0000      0.7033     0.0526 
5   1.0000     0.0000      0.0000     0.0000 
 
Target Returns and Risks: 
     mean     Cov    CVaR     VaR 
1 -0.0007  0.0713  0.1421  0.1342 
2  0.0011  0.0347  0.0826  0.0447 
3  0.0029  0.0277  0.0598  0.0326 
4  0.0047  0.0266  0.0560  0.0384 
4 0.0065  0.0388  0.0944  0.0552 
 
 
 
 

 

The following example gives printout list of the weights, the target return and risk values 

along the envelope set for the MV Portfolio, starting with the portfolio with the lowest return 

and ending with the highest reached return. 

 
> print(frontier) 
 
Title: 
 MV Portfolio Frontier  
 Estimator:         covEstimator  
 Solver:            solveRquadprog  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 Portfolio Points:  5 of 24  
 
Portfolio Weights: 
   FB.Close AMZN.Close GOOGL.Close TSLA.Close 
1    0.0000     0.1202      0.0000     0.8798 
6    0.0000     0.7212      0.0000     0.2788 
12   0.0000     0.3470      0.5063     0.1467 
18   0.2485     0.0000      0.6686     0.0828 
24   1.0000     0.0000      0.0000     0.0000 
 
Covariance Risk Budgets: 
   FB.Close AMZN.Close GOOGL.Close TSLA.Close 
1    0.0000     0.0154      0.0000     0.9846 
6    0.0000     0.5989      0.0000     0.4011 
12   0.0000     0.3727      0.4451     0.1822 
18   0.2698     0.0000      0.6686     0.0616 
24   1.0000     0.0000      0.0000     0.0000 
 
Target Returns and Risks: 
      mean     Cov    CVaR     VaR 
1  -0.0004  0.0636  0.1280  0.1181 
6   0.0011  0.0346  0.0826  0.0446 
12  0.0029  0.0265  0.0617  0.0367 
18  0.0047  0.0265  0.0561  0.0358 
24  0.0065  0.0388  0.0944  0.0552 
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7.3  Comparison of relative Performance of MV and CVaR Portfolios 

before the Corona Crisis 

 

In this section we present the results of the two methods under evaluation for the period 

before the corona crisis (from December 2018 to December 2019). This period should capture 

positive financial situations on the market. Comparing the portfolio sets that resulted from 

MV and CVaR methods (R output 1 and R output 2) it can be concluded that MV portfolio 

method yielded a better rate of return with lower risk. These results refer to the whole period 

under consideration. 

Figure12 presents weights along the envelope frontier in the case of the MVand Figure 

11shows weights in the case of CVaR optimization. Comparing the weights obtainedby both 

optimization methods, we can observe the difference in composition of portfolios in the 

middle part or in the part near separation line that marks the position between the minimum 

variance locus and efficient frontier. 

The result shows that the weights of Amazon stocks are lower and weights of Google are 

higher for the portfolios constructed by minimizing CVaR. The reason for this could be that 

the distribution for the returns of the Amazon exhibits a negative skewness and has fatter tails 

than the returns of the other stocks. Negative skewness shows frequent small gains and a few 

extreme losses. This can lead to an underestimation of the risk connected with Amazon 

stocks. This aspect hasnn't been taken into consideration when choosing weights according to 

the mean-variance criteria but it is captured in CVaR optimization method. In the end the 

underestimation of the risk leads to an overestimation of the optimal weights. 

 

 

7.4 Comparison of relative Performance of MV and CVaR Portfolios during 

the Corona Crisis 

 

In this section we will compute feasible portfolios, portfolios with the lowest risk for a given 

target return and global minimum-risk portfolios using both optimization methods, MV and 

CVaR. Period under consideration is the interval from December 2019 to July 2020. This 

period captures the outbreak of the corona virus. MV and CVaR global minimum-risk 

portfolios will be compared and analyzed.  
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We will start the analysis with the summary and plots of asset prices (presented in Figure 13) 

and calculation of the skewness of returns. Th eplots for the period influenced by the corona 

virus (Figure 13) unveil volatility, big jumps and drops in the prices (taking into account the 

absolute price difference). In one month Google stock had plunge from 1519 to 1068 dollars 

and Tesla stock from ca. 900 to ca. 400 dollars. Hence we can expect that these two stocks 

will constitute a very little, if any portion of the optimized portfolios. Moreover, Tesla has the 

greatest negative skewness (-1,09) indicating that the values of returns are more likely to be 

below the mean, which is an additional reason to classify this stock as risky asset. 

 
 
 
 
plot(portfolioPrices[, 1], main = "Time series plots FB", col = "steelblue") 
>       plot(portfolioPrices[, 2], main = "Time series plots AMZN", col = "steelblue") 
>       plot(portfolioPrices[, 3], main = "Time series plots GOOGL", col = "steelblue") 
>       plot(portfolioPrices[, 4], main = "Time series plots TSLA", col = "steelblue") 
 
 

 
> summary(portfolioPrices_corona) 
     Index               FB.Close       AMZN.Close    GOOGL.Close     TSLA.Close     
 Min.   :2019-12-02   Min.   :149.7   Min.   :1752   Min.   :1068   Min.   : 335.9   
 1st Qu.:2020-01-23   1st Qu.:191.3   1st Qu.:1872   1st Qu.:1307   1st Qu.: 495.3   
 Median :2020-03-16   Median :208.7   Median :2043   Median :1363   Median : 701.3   
 Mean   :2020-03-16   Mean   :202.9   Mean   :2133   Mean   :1352   Mean   : 672.6   
 3rd Qu.:2020-05-07   3rd Qu.:218.0   3rd Qu.:2410   3rd Qu.:1431   3rd Qu.: 818.1   
 Max.   :2020-06-29   Max.   :238.8   Max.   :2759   Max.   :1519   Max.   :1079.8  
 
 
>   kurtosis(portfolioReturns_corona) 
                  FB.Close AMZN.Close GOOGL.Close TSLA.Close 
Excess Kurtosis -0.3275306   2.871792    1.258408   1.213307 
 
>   skewness(portfolioReturns_corona) 
           FB.Close AMZN.Close GOOGL.Close TSLA.Close 
Skewness -0.2341921   0.122417   -0.808046  -1.088944 
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Figure 13:Time series plots of stock prices for the period from December 2019 to July 2020 

Source: Authors creation (R-studio) 

 

The following examples present portfolio computations. First, we compute equal weights 

feasible portfolio with “LongOnly” constraint, using CVaR and then MV parameters. 

 
> cvarSpec_corona <- portfolioSpec() 
> setType(cvarSpec_corona) <- "CVAR" 
> nAssets <- ncol(CvaRdata) 
> setWeights(cvarSpec_corona) <- rep(1/nAssets, times = nAssets) 
> setSolver(cvarSpec_corona) <- "solveRglpk.CVAR" 
> nAssets <- ncol(portfolioReturns_corona) 
> ewPortfolio <- feasiblePortfolio( 
+   data <- portfolioReturns_corona, 
+   spec <- cvarSpec_corona, 
+   constraints <- "LongOnly") 
> print(ewPortfolio) 
 
Title: 
 CVAR Feasible Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRglpk.CVAR  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 
Portfolio Weights: 
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   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
       0.25        0.25        0.25        0.25  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.1895      0.1317      0.1745      0.5042  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0150 0.0604 0.1384 0.1172  

 
>  ewSpec <- portfolioSpec() 
>  nAssets <- ncol(portfolioReturns_corona) 
>  setWeights(ewSpec) <- rep(1/nAssets, times = nAssets) 
> ewPortfolio_corona <- feasiblePortfolio( 
+    data = portfolioReturns_corona, 
+    spec = ewSpec, 
+    constraints = "LongOnly") 
>   print(ewPortfolio_corona) 
 
Title: 
 MV Feasible Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRquadprog  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 
Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
       0.25        0.25        0.25        0.25  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.1895      0.1317      0.1745      0.5042  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0150 0.0604 0.1384 0.1172  

 

Secondly, specifying the target return as the return of the equaly weighted portfolio, we 

compute MV and CVaR portfolios with the same return but lower risk. 

 
> minriskSpec <- portfolioSpec() 
> setType(minriskSpec) <- "CVaR" 
> setAlpha(minriskSpec) <- 0.05 
> setSolver(minriskSpec) <- "solveRglpk.CVAR" 
> setTargetReturn(minriskSpec) <- getTargetReturn(ewPortfolio@portfolio)["mean"] 
> minriskPortfolio <- efficientPortfolio(data = portfolioReturns_corona, spec = minriskSpec, 
+                                        constraints = "LongOnly") 
> print(minriskPortfolio) 
 
Title: 
 CVaR Efficient Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRglpk.CVAR  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 VaR Alpha:         0.05  
 
Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0122      0.9878      0.0000      0.0000  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0048      0.9952      0.0000      0.0000  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0150 0.0441 0.0920 0.0630  

 
>    minriskSpec <- portfolioSpec() 
>    minriskSpec <- portfolioSpec() 
>    targetReturn <- getTargetReturn(ewPortfolio_corona@portfolio)["mean"] 
>    setTargetReturn(minriskSpec) <- targetReturn 
> minriskPortfolio_corona <- efficientPortfolio( 
+      data = portfolioReturns_corona, 
+      spec = minriskSpec, 
+      constraints = "LongOnly") 
>     print(minriskPortfolio_corona) 
 
Title: 
 MV Efficient Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRquadprog  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 
Portfolio Weights: 
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   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0430      0.9426      0.0000      0.0143  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0201      0.9489      0.0000      0.0311  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0150 0.0441 0.0944 0.0657 

 

Finally, setting parameters for global minimum-risk portfolio we get the MV and CVaR 

efficient portfolios with the lowest possible risk. 

 
> globminSpec <- portfolioSpec() 
> globminSpec_corona <- portfolioSpec() 
> setType(globminSpec_corona) <- "CVaR" 
> setAlpha(globminSpec_corona) <- 0.05 
> setSolver(globminSpec_corona) <- "solveRglpk.CVAR" 
> setTargetReturn(globminSpec_corona) <- getTargetReturn(ewPortfolio@portfolio)["mean"] 
> globminPortfolio_corona <- minriskPortfolio(data = portfolioReturns_corona, spec = globminSpec_corona, 
+                                      constraints = "LongOnly") 
> print(globminPortfolio_corona) 
 
Title: 
 CVaR Minimum Risk Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRglpk.CVAR  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 VaR Alpha:         0.05  
 
Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.5904      0.4096      0.0000      0.0000  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.7394      0.2606      0.0000      0.0000  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0086 0.0442 0.0845 0.0621  
 
 
 
> globminSpec_cor <- portfolioSpec() 
>  globminPortfolio_cor <- minvariancePortfolio( 
+   data = portfolioReturns_corona, 
+   spec = globminSpec_cor, 
+   constraints = "LongOnly") 
>  print(globminPortfolio_cor) 
 
Title: 
 MV Minimum Variance Portfolio  
 Estimator:         covEstimator  
 Solver:            solveRquadprog  
 Optimize:          minRisk  
 Constraints:       LongOnly  
 
Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0309      0.5439      0.4253      0.0000  
 
Covariance Risk Budgets: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0309      0.5439      0.4253      0.0000  
 
Target Returns and Risks: 
  mean    Cov   CVaR    VaR  
0.0092 0.0388 0.0908 0.0638  
 

 

The optimization shows that the performance and risk measure for each global minimum-risk 

portfolio differs. First, the composition of the two portfolios reveals that CVaR optimization 

method takes into account severe losses whereas MV does not. As we have seen, Tesla has 

the greatest negative skewness (-1,09) followed by Google (-0,8) and this is the reason why 

portfolio under CVaR optimization does not include this asset. However, MV optimized 

portfolio contains Google stock, acctually in a pretty big proportion (0,4253), which suggests 

that MV does not take into account the skewness of the losses when forming the optimal 
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portfolio and therefore can lead to severe losses. Moreover, CVaR portfolio has a lower return 

(0,0086) but a lower risk (0,0621) than MV portfolio (0,0092; 0.638). We can conclude that 

MV outperforms CVaR in terms of return but higher return comes at price of higher risk.  

 

7.5 Comparison of CVaR and MV Portfolios during both Periods 

 

We start this analysis with visual representation (Figure 14) of stock returns before and during 

the corona crisis. Movements of stock prices are usually unpredictable even during the stable 

periods, meaning that uncertainty of financial assets exhibits a random walk in the price 

behavior. However, during the crisis stock prices should reveal overall volatility and huge 

drops. Figures13 and 14 confirm that overall volatility dramatically scaled up in March 2020 

at time of the outbreak of the corona crisis. However, this abrupt price drops lasted only for a 

short time. Jumps and drops thereafter were more frequent and inconsistent compared to the 

period before the corona crisis. 

 
>  colnames(portfolioReturns) 
[1] "FB.Close"    "AMZN.Close"  "GOOGL.Close" "TSLA.Close"  
>  plot(portfolioReturns, main = "Time series plots", col = "steelblue") 

 
Figure 14:Time series plot of stock returns in the period from December 2019 to July 2020 

Source: Authors creation (R-studio) 
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Figure 15:Time series plot of stock returns in the period from December 2018 to July 2019 

Source: Authors creation (R-studio) 

 
 

Before we analyze MV and CVaR optimized portfolios and compare the two periods, we will 

make short comments on skewness (R output 3) that will help us better understand the 

composition of the optimized portfolios. 

 
>   skewness(portfolioReturns) 
           FB.Close AMZN.Close  GOOGL.Close TSLA.Close 
Skewness -0.7878122  -1.182657 0.0009393663  0.2948031 
 
 
>   skewness(portfolioReturns_corona) 
           FB.Close AMZN.Close GOOGL.Close TSLA.Close 
Skewness -0.2341921   0.122417   -0.808046  -1.088944 
 
>   kurtosis(portfolioReturns) 
                FB.Close AMZN.Close GOOGL.Close TSLA.Close 
Excess Kurtosis 2.885864   4.088024   0.7807338   1.564074 
 
 
>     kurtosis(portfolioReturns_corona) 
                  FB.Close AMZN.Close GOOGL.Close TSLA.Close 
Excess Kurtosis -0.3275306   2.871792    1.258408   1.213307 

R output 3 

 

 

Several studies in empirical finance confirm that distributios of asset returns are characterized 

by negative skewness and excess kurtosis, meaning that the assumption of normal distribution 
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is continuously being violated (Beedles, 198629 Lux & Marchesi, 200030). From looking at the 

skewness before the crisis, it can be seen that Google was near zero (0,0009), exhibiting 

normal symmetric distribution, and Tesla was slightly positive (0,294) meaning that it had 

frequent small losses and a few extreme gains.  Amazon had negative skewness (-1,18), as 

well as Facebook (-0,787). CVaR optimized global minimum-risk portfolio was constituted 

according to these parameters: 
 
Portfolio Weights: 
   FB.Close  AMZN.Close GOOGL.Close  TSLA.Close  
     0.0000      0.0000      0.8021      0.1979  

 
On the other hand, MV optimized portfolio included Facebook and Amazon stocks despite 
theirs risky component: 
 
PortfolioWeights: 
    FB   AMZN  GOOGL   TSLA  
0.0907 0.1754 0.6205 0.1134  
 
 

Moreover, Amazon had very high kurtosis (4,08) and that is the reason why it is not included 

in CVaR portfolio. 

Aditionally, it can be concluded that during the corona crisisboth MV and CVaR optimized 

portfolios yielded higher return but also higher risk, where CVaR had a slightly lower return 

than MV. The reason for this could be in a shorter time interval under consideration during 

which there was one big drop for all stocks but also some jumps. This can be seen from lower 

kurtosis of stocks, where portfolio with smaller kurtosis tends to have less extreme events and 

is preferred by investors. What is the most evident is that the traditional MV model deals with 

the variance of returns as risk measure and determines optimal portfolio accordingly, without 

incorporating extreme left-tail events as CVaR model does. Therefore, optimized MV and 

CVaR portfolios have pretty different compositions of assets. That can lead to 

underperformance of MV portfolio. 
 

 

 

 

 
29Beedles, W., 1986. Asymmetry in Australian Equity Returns. Australian Journal of Management, 11(1), pp.1-
12 
30LUX, T. and MARCHESI, M., 2000. VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A 
MICROSIMULATION OF INTERACTING AGENTS. International Journal of Theoretical and Applied 
Finance, 03(04), pp.675-702.. 
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Conclusion 

 

Portfolio theory is one of the most widely studied parts of quantitative investment analysis. 

The main problem each investor faces is to decide in which securities to invest and than select  

portfolio to invest in from the set of all feasible portfolios. Harry Markowitz proposed 

solution to this problem referred to as the „portfolio selection problem“. Markowitz's theory 

provides the theoretical foundation for evaluating portfolios on the basis of their expected 

returns, seen as a measure of potential reward, and risk as measured by the standard deviation. 

He first derived the concept of an efficent portfolio as one having the smallest risk for a given 

level of expected return. He also illustrated the principle of diversification, that is the process 

of selecting assets that are differently affected by specific market volatility, as a very 

important concept of risk reduction. One main characteristic of diversification is making 

balance between the risk and rewards of distinct investments. The Markowitz model yields 

efficient portofolios assuming that we have perfect information on the expected returns and 

covariances for the assets that we are considering. In reality, we do not have perfect 

information and small changes in time series from the past returns lead to changes in the 

expected returns that can distort the result of efficent portfolios. Markowitz model uses 

variance as a measure of risk with the assumption of normal distibution of returns.Recent 

history has shown that financial assets do not exibit normal distibution and Markowitzs 

assumption of normally distributed asset returns makes optimisation process open to 

underestimation of risk. Due to this drawbacks, some downside risk measures have been 

introduced, such as CvaR. In this thesis CvaR was implemented and tested in R software 

together with MV optimization method. The portfolio optimization was performed for two 

distinct time periods. The first interval covers the period from December 2018 to Decembar 

2019, while the second interval covers the period during the corona virus outbreak, that is 

from December 2019 to July 2020. Periods were chosen as to capture both favourable and 

negative financial market conditions. Results show that MV global minimum-risk portfolio 

outperformed CvaR global minimum-risk portfolioin terms of rate of return for both periods. 

Also, difference in rates of return was much smaller during the period before the corona virus 

crisis. Shorter period of historical observations during the corona virus crisis could have had 

impact on higher, not so realistic, rates of return. Moreover, better performance of MV 

method might be due to the MV concept that penalizes losses and gains symetrically. Both  

MV and CvaR optimized portfolios had greater risk during second period. This result was 
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expected due to the uncertainty that crisis has brought. The important conclusion from this 

study is that there is a difference in how these two methods measure and evaluate risk. Unlike 

in CVaR method, the presence of negative skewness, higher probability of getting negative 

returns and excess kurtosis, indicating higher probability of extreme events, are not included 

in MV framework. This has led to different compositions of MV and CVaR portoflios. Hence, 

nowdays when financial markets exibit many abrupt changes, portfolio optimisation based on 

MV framework can lead to underestimation of risk, yielding inefficent portoflio rather than 

the efficient one. Further analysis can be done in revising the traditional MV approach by 

including other moments of risk. 
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